吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 154-168.doi: 10.13278/j.cnki.jjuese.20190224

• 地质与资源 • 上一篇    

柴北缘乌兰北部三叠纪辉长岩的年代学和地球化学特征

岳悦1, 孙德有1, 侯可军2, 彭银彪3   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 中国地质科学院矿产资源研究所, 北京 100037;
    3. 中国海洋大学海洋地球科学学院, 山东 青岛 266100
  • 收稿日期:2019-10-25 发布日期:2021-02-02
  • 作者简介:岳悦(1993-),女,硕士,主要从事火成岩方面的研究,E-mail:1332129482@qq.com
  • 基金资助:
    国家自然科学基金项目(41572053)

Geochronology and Geochemistry of Triassic Gabbro in Northern Wulan, Northern Margin of Qaidam Basin

Yue Yue1, Sun Deyou1, Hou Kejun2, Peng Yinbiao3   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
    3. College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China
  • Received:2019-10-25 Published:2021-02-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41572053)

摘要: 柴北缘乌兰地区中生代岩浆岩分布广泛,主要出露辉长岩、闪长岩、花岗闪长岩和花岗岩。乌兰北部两件辉长岩样品的LA-ICP-MS锆石U-Pb测年显示其加权平均年龄分别为(241.9±0.9) Ma和(245.4±1.9) Ma,说明其形成于中三叠世早期。辉长岩的w(SiO2)为47.94%和52.01%,全碱质量分数较低(ALK为1.25%和1.47%),里特曼指数为0.33和0.26,属钙碱性系列岩石;w(Cr)(1 661.00×10-6和1 418.00×10-6)、w(Ni)(394.00×10-6和280.00×10-6)和Mg#值(81和79)极高,具幔源原生玄武岩浆特征。轻、重稀土元素分馏较弱,LREE/HREE为3.92和3.44,无明显负Eu异常,表明未发生明显的岩浆分异作用;富集K、Rb等大离子亲石元素,不同程度地亏损Nb、Ta、Ti等高场强元素,表现为与俯冲作用相关的弧岩浆岩特征。辉长岩的εHft)值(-3.0~9.3)变化较大,暗示来自地幔的基性岩浆中有地壳组分的加入。结合区域地质演化特征研究成果,认为辉长岩形成于古特提斯洋向北俯冲背景下的大陆边缘弧环境,俯冲的洋壳板片脱水产生的流体导致上覆地幔楔部分熔融,形成玄武质岩浆,岩浆上升侵位过程中遭受地壳物质混染或与壳源岩浆发生混合作用。

关键词: 柴北缘, 辉长岩, 锆石U-Pb测年, 地球化学, 岩浆弧, 古特提斯洋

Abstract: The Mesozoic magmatic rocks are widespread in Wulan area of northern Qaidam, and consist largely of gabbro, diorite, granodiorite and granite. The LA-ICP-MS zircon U-Pb dating of two gabbro samples yield well-constrained ages of (241.9±0.9) Ma and (245.4±1.9) Ma, indicating their formation of the Middle Triassic. Their SiO2 content of gabbro in northern Wulan area is 47.94% and 52.01%, the total alkali content is low (1.25% and 1.47%), and the Ritman index is 0.33 and 0.26 respectively, belonging to cala-alkaline series. They have high Mg# (81 and 79), Cr (1 661.00×10-6 and 1 418.00×10-6), and Ni (394.00×10-6 and 280.00×10-6), similar to those predicted of the original basaltic melts. They have weak LREE/HREE fractionation (3.92 and 3.44) with nearly no Eu anomalies and no obvious magma differentiation. The primitive mantle normalized trace element spider diagrams show enrichment of large ion lithophile elements (e.g., K, Rb) and depletion of high field strength elements (e.g., Nb, Ta, Ti), characteristics considered typical of subduction-related arc magmatic rocks. The large variation of zircon εHf(t) values (from -3.0 to 9.3) implies that the crustal components seem to have been incorporated in the mantle-derived mafic magmas. Combined with regional geological evolution, we suggest that the gabbro formed in the continental marginal arc environment related to the northward subduction of the Paleo-Tethys Oceanic plate. The fluids released from the subducting oceanic slab promote partial melting of the overlying mantle wedge to produce basaltic magma, which was contaminated by crustal materials or mixed with crust-derived magma during magma ascending.

Key words: northern margin of Qaidam, gabbro, zircon U-Pb dating, geochemistry, magma arc, Paleo-Tethys Ocean

中图分类号: 

  • P588.12
[1] 宋述光,杨经绥. 柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体:超高压变质作用的证据[J].地质学报,2001, 75(2):180-185. Song Shuguang,Yang Jingsui. Sanidine+Quartz Inclusions in Dulan Eclogites:Evidence for UHP Metamorphism on the North Margin of the Qaidam Basin, NW China[J]. Acta Geologica, 2001, 75(2):180-185.
[2] 张建新,杨经绥,许志琴,等. 柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据[J]. 地球化学,2005, 29(3):217-222. Zhang Jianxin, Yang Jingsui, Xu Zhiqin, et al. Reak and Retrograde Age of Eclogites at the Northern Margin of Qaidam Basin, Northwestern China:Evidences from U-Pb and Ar-Ar Dates[J]. Geochimica, 2005, 29(3):217-222.
[3] Zhang J X, Yang J S, Mattinson C G, et al. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China:Petrological and Isotope Constraints[J]. Lithos, 2005, 84(1/2):51-76.
[4] 王毅智,拜永山,陆海莲. 青海天峻南山蛇绿岩的地质特征及其形成环境[J]. 青海地质,2001, 10(1):29-35. Wang Yizhi, Bai Yongshan, Lu Hailian. Geological Characteristics of Tianjunnanshan Ophiolite in Qinghai and Its Forming Environment[J]. Geology of Qinghai, 2001, 10(1):29-35.
[5] 闫臻,王宗起,李继亮,等. 西秦岭楔的构造属性及其增生造山过程[J]. 岩石学报,2012, 28(6):1808-1828. Yan Zhen, Wang Zongqi, Li Jiliang, et al. Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau[J]. Acta Petrologica Sinica, 2012, 28(6):1808-1828.
[6] 许志琴,杨经绥,李文昌,等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报,2013, 29(6):1847-1860. Xu Zhiqin, Yang Jingsui, Li Wenchang, et al. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau[J].Acta Petrologica Sinica, 2013, 29(6):1847-1860.
[7] 孙延贵,张国伟,郑健康,等. 柴达木地块东南缘岩浆弧(带)形成的动力学背景[J]. 华南地质与矿产,2001(4):16-21. Sun Yangui, Zhang Guowei, Zheng Jiankang, et al. Analysis of Dynamic Backgrounds of Magmatic Arc in the Southeastern Margin of Qaidam Massif[J]. Geology and Mineral Resources of South China, 2001(4):16-21.
[8] 闫臻,郭现轻,付长垒,等. 秦祁昆结合部晚三叠世OIB型玄武岩岩石学、地球化学及SHRIMP锆石U-Pb年代学研究[J]. 地学前缘,2012, 19(5):164-176. Yan Zhen, Guo Xianqing, Fu Changlei, et al. Petrology, Geochemistry and SHRIMP U-Pb Dating of Zircons from Late Triassic OIB-Basalt in the Conjunction of the Qinling-Qilian-Kunlun Orogens[J]. Earth Science Frontiers, 2012, 19(5):164-176.
[9] 吴才来,雷敏,吴迪,等. 柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因[J]. 地球学报,2016, 37(4):493-516. Wu Cailai, Lei Min, Wu Di, et al. Zircon SHRIMP Dating and Genesis of Granites in Wulan Area of Northern Qaidam[J]. Acta Geoscientica Sinica, 2016, 37(4):493-516.
[10] 陆松年,王惠初,李怀坤,等. 柴达木盆地北缘"达肯大坂群"的再厘定[J]. 地质通报,2002, 21(1):19-23. Lu Songnian, Wang Huichu, Li Huaikun, et al. Redefinition of the"Dakendaban Group" on the Northern Margin of the Qaidam Basin[J]. Geological Bulletin of China, 2002, 21(1):19-23.
[11] 陆松年,陈志宏,李怀坤,等. 秦岭造山带中-新元古代(早期)地质演化[J]. 地质通报,2004, 23(2):107-112. Lu Songnian, Chen Zhihong, Li Huaikun, et al. Late Mesoproterozoic-Early Neoproterozoic Evolution of the Qinling Orogen[J]. Geological Bulletin of China, 2004, 23(2):107-112.
[12] 郭安林,张国伟,强娟,等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报,2009, 25(1):1-12. Guo Anlin, Zhang Guowei, Qiang Juan, et al. Indosinian Zongwuling Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 2009, 25(1):1-12.
[13] 彭渊,马寅生,刘成林,等. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义[J]. 地学前缘,2016, 23(2):206-221. Peng Yuan, Ma Yinsheng, Liu Chenglin, et al. Geological Chatacteris-Tics and Techonic Sifnificance of the Indosinian Granodiorites from the Zongwulong Tectonic Belt in North Qaidam[J]. Earth Science Frontiers, 2016, 23(2):206-221.
[14] 青海省地质矿产局. 青海区域地质志[M]. 北京:地质出版社,1991. Bureau of Geology and Mineral Resources of Qinghai Province. Regional Geology of Qinghai Province[M]. Beijing:Geology Publishing House,1991.
[15] 王惠初,李怀坤,陆松年,等. 柴北缘鱼卡地区达肯大坂岩群的地质特征与构造环境[J]. 地质调查与研究,2006, 29(4):253-262. Wang Huichu, Li Huaikun, Lu Songnian, et al. Geological Characteristics and Tectonic Setting of the Dakendaban Group in Iqe Area, Northern Margin of Qaidam Basin[J]. Geological Survey and Research, 2006, 29(4):253-262.
[16] 李晓彦,陈能松,夏小平,等. 莫河花岗岩的锆石U-Pb和Lu-Hf同位素研究:柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束[J]. 岩石学报,2007, 23(2):513-522. Li Xiaoyan, Chen Nengsong, Xia Xiaoping, et al. Constrains on Timing of the Early-Paleoproterozoic Magmatism and Crustal Evolution of the Oulongbuluke Microcontinent:U-Pb and Lu-Hf Isotope Systematics of Zircons from Mohe Granitic Pluton[J]. Acta Petrologica Sinica, 2007, 23(2):513-522.
[17] 程婷婷,牛漫兰,吴齐,等. 柴北缘察汗诺辉长岩成因:岩石地球化学、锆石U-Pb年代学与Lu-Hf同位素制约[J]. 地质科学,2015, 50(3):741-755. Cheng Tingting, Niu Manlan, Wu Qi, et al. Petrogenesis of the Chahannuo Gabbro on the North Margin of Qaidam Basin:Constraint from Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotopes[J]. Chinese Journal of Geology, 2015, 50(3):741-755.
[18] Yu S Y, Zhang J X, Li S Z, et al. Paleoproterozoic Granulite-Facies Metamorphism and Anatexis in the Oulongbuluke Block, NW China:Respond to Assembly of the Columbia Supercontinent[J]. Precambrian Research, 2017, 291:42-62.
[19] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.
[20] Ludwig K R. User's Manual for Isoplot 3.00:A Geolocronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication, 2003:25-32.
[21] Boynton W V. Geochemistry of the Rare Earth Elements:Meteorite Studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1983:63-114.
[22] Sun S S, McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42:313-346.
[23] Pearce J A, Harris N B, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25:956-983.
[24] 许志琴,侯立玮,王宗秀. 中国松潘-甘孜造山带的造山过程[M]. 北京:地质出版社,1992:1-190. Xu Zhiqin, Hou Liwei,Wang Zongxiu. Orogenic Process of Songpan-Ganzi Orogenic Belt in China[M]. Beijing:Geological Publishing House, 1992:1-190.
[25] 徐学义,陈隽璐,高婷,等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报,2014, 30(2):371-389. Xu Xueyi, Chen Junlu, Gao Ting, et al. Granitoid Magmatism and Tectonic Evolution in Northern Edge of the Western Qinling Terrane[J]. Acta Petrologica Sinica, 2014, 30(2):371-389.
[26] Guo X Q, Yan Z, Wang Z Q, et al. Middle Triassic Arc Magmatism Along the Northeastern Margin of the Tibet:U-Pb and Lu-Hf Zircon Characterization of the Gangcha Complex in the West Qinling Terrane,Central China[J]. Journal of the Geological Society, 2012, 169(3):327-336.
[27] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in Oceanic Basalts:New Constraints on Mantle Evolution[J]. Earth and Planetary Science Latters, 1986, 79(1/2):33-45.
[28] Münker C, Pfänder J A, Weyer S, et al. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics[J]. Science, 2003, 301:84-88.
[29] Barth M G, McDonough W F,Rudnick R L. Tracking the Budget of Nb and Ta in the Continental Crust[J]. Chemical Geology, 2000, 165(3):197-213.
[30] Taylor S R,Mclennan S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell Scientific Publications, 1985:1-312.
[31] Wood D A. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30.
[32] Yan Z, Guo X Q, Fu C L, et al. Detrital Heavy Mineral Constraints on the Triassic Tectonic Evolution of the Weat Qinling Terrane, NW China:Implications for Understanding Subduction of the Paleotethyan Ocean[J]. The Journal of Geology, 2014, 122(5):591-607.
[33] 闫臻,边千韬,Korchagin O A,等. 东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学证据[J].岩石学报,2008, 24(5):1068-1078. Yan Zhen, Bian Qiantao, Korchagin O A, et al. Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains from Detrital Framework, Heavy Mineral Analysis and Geochemistry[J]. Acta Petrologica Sinica, 2008, 24(5):1068-1078.
[34] 张宏飞,陈岳龙,徐旺春,等. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义[J]. 岩石学报,2006, 22(12):2910-2922. Zhang Hongfei, Chen Yuelong, Xu Wangchun, et al. Granitoids Around Gonghe Basin in Qinghai Province:Petrogensis and Tectonic Implications[J]. Acta Petrologica Sinica, 2006, 22(12):2910-2922.
[35] Xiao W J, Windley B F, Hao J, et al. Arc-Ophiolite Obduction in the Western Kunlun Range(China):Implications for the Palaeozoic Evolution of Central Asia[J]. Journal of the Geological Society, 2002, 159:517-528.
[36] 王松,丰成友,李世金,等. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 中国地质,2009, 36(1):74-84. Wang Song, Feng Chengyou, Li Shijin, et al. Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit, Qimantage Mountain, Qinghai Province, and Its Geological Implications[J]. Geology in China, 2009, 36(1):74-84.
[37] 夏文静,牛漫兰,闫臻,等. 柴北缘牦牛山地区牦牛山组沉积相组合特征[J]. 地质学报,2014, 88(5):943-955. Xia Wenjing, Niu Manlan, Yan Zhen, et al. Sedimentary Facies of the Maoniushan Formation in Maoniushan Area Along the Northern Margin of Qaidam Terrane[J]. Acta Geological Sinica, 2014, 88(5):943-955.
[38] 辜平阳,陈锐明,查显锋,等. 柴达木盆地西北缘石英闪长岩的形成时代、岩石成因及地质意义[J]. 岩石矿物学杂志,2018, 37(1):19-33. Gu Pingyang, Chen Ruiming, Zha Xianfeng, et al. The Age, Petrogenesis and Geological Significance of Quartz Diorite on the Northwestern Margin of Qaidam Basin[J]. Acta Petrologica et Mineralogica, 2018, 37(1):19-33.
[39] 吴才来,郜源红,吴锁平,等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学:D辑,2008, 38(8):930-949. Wu Cailai, Gao Yuanhong, Wu Suoping, et al. Ziecon SHRIMP U-Pb Dating and Geochemical Characteristics of Granites from the Western of the North Margin of Qaidam[J]. Science China:Series D, 2008, 38(8):930-949.
[40] 董增产,辜平阳,陈锐明,等. 柴北缘西端盐场北山二长花岗岩年代学、地球化学及其Hf同位素特征[J]. 地球科学,2015, 40(1):130-144. Dong Zengchan, Gu Pingyang, Chen Ruiming, et al. Geochronology, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai[J]. Earth Science, 2015, 40(1):130-144.
[41] 董增产,杨成,辜平阳,等. 青海冷湖盐场北山黑云母二长花岗岩年代学、地球化学及其地质意义[J]. 大地构造与成矿学,2015, 39(1):167-178. Dong Zengchan, Yang Cheng, Gu Pingyang, et al. Geochronology and Geochemistry of Yanchangbeishan Biotite Adamellite of Lenghu Area in Qinghai and Their Geological Significance[J]. Geotectonica et Metallogenia, 2015, 39(1):167-178.
[1] 陆胜, 王可勇, 赵焕利, 相雷, 刘阳, 张志博. 大兴安岭漠河前哨林场侵入岩年代学、岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 126-140.
[2] 王宇晴, 董春艳, 白文倩, 颉颃强, 万渝生. 鲁西莲花山地区新太古代晚期二长花岗岩中的表壳岩包体——SHRIMP锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 141-153.
[3] 尹志刚, 宫兆民, 王春生, 刘松杰, 张圣听, 王冠群, 周小刚, 张志浩. 小兴安岭平顶山一带早侏罗世花岗岩类年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 107-125.
[4] 董洋, 刘苏, 张思佳. 辽东岫岩王家堡子地区二长花岗岩U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1720-1736.
[5] 彭游博, 刘文彬, 赵军, 崔育崧, 杨成会, 赵辰, 温聪. 辽南岩体LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义——以盖州万福-岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1737-1751.
[6] 孙立影, 杨晨, 赵海士, 常志勇. 基于极限学习机的遥感地球化学反演模型[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1929-1938.
[7] 李玉超, 王诚煜, 于成广. 辽宁丹东地区土壤Se元素地球化学特征及其影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1766-1775.
[8] 张新远, 李五福, 王春涛, 刘建栋, 欧阳光文. 青海拉脊山东段白家藏侵入岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1703-1719.
[9] 豆世勇. 辽北开原地区房木花岗斑岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1752-1765.
[10] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[11] 熊光强, 刘敏, 张达, 王忠. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.
[12] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323-1339.
[13] 余振东, 项新葵, 谭荣, 孙德明, 张斯. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1505-1517.
[14] 孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1433-1449.
[15] 贺根文, 路思明, 彭琳琳, 于长琦, 李伟, 刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1491-1504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!