吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 380-399.doi: 10.13278/j.cnki.jjuese.20200002

• 地质与资源 • 上一篇    

桂北宝坛锡多金属成矿区平英岩体晚期侵入岩的年代学、地球化学特征及其地质意义

覃小锋1,2, 张诚1,2, 王宗起3, 马收先3, 宫江华3, 冯毅1,2, 崔安民1,2, 李东1,2   

  1. 1. 桂林理工大学地球科学学院, 广西 桂林 541004;
    2. 广西隐伏金属矿产勘查重点实验室(桂林理工大学), 广西 桂林 541004;
    3. 中国地质科学院矿产资源研究所, 北京 100037
  • 收稿日期:2020-01-04 发布日期:2021-04-06
  • 通讯作者: 张诚(1992-),男,硕士研究生,主要从事岩石学与成矿方面的研究,E-mail:zhangcheng199212@foxmail.com E-mail:zhangcheng199212@foxmail.com
  • 作者简介:覃小锋(1969-),男,教授,博士,主要从事构造地质和岩石学方面的研究,E-mail:qxf@glut.edu.cn
  • 基金资助:
    中国地质调查局项目(DD20160124,12120114039501)

Geochronology,Geochemistry and Geological Significance of the Latest Intrusive Rocks in Pingying Granite Pluton from Baotan Tin Polymetallic Metallogenic Area, Northern Guangxi

Qin Xiaofeng1,2, Zhang Cheng1,2, Wang Zongqi3, Ma Shouxian3, Gong Jianghua3, Feng Yi1,2, Cui Anmin1,2, Li Dong1,2   

  1. 1. College of Earth Science, Guilin University of Technology, Guilin 541004, Guangxi, China;
    2. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(Guilin University of Technology), Guilin 541004, Guangxi, China;
    3. Institute of Mineral Resources, Chinese Amdemy of Geological Sciences, Beijing 100037, China
  • Received:2020-01-04 Published:2021-04-06
  • Supported by:
    Supported by the Project of China Geological Survey(DD20160124,12120114039501)

摘要: 桂北宝坛锡多金属成矿区内岩浆活动频繁,其中与锡多金属成矿作用有关的平英岩体由早晚两期侵入岩组成,且晚期侵入岩中常含有较多的电英岩包体。岩石学、锆石U-Pb年代学和地球化学研究表明:平英岩体晚期侵入岩主要岩性是(中)细粒斑状黑云母(二长-)碱长花岗岩;晚期侵入岩的形成年龄为(769.2±2.5)Ma,而电英岩包体的形成年龄为(795.1±3.1)Ma;平英岩体总体以富含大离子亲石元素(LILE,包括Rb、Th和U等)、贫高场强元素(HFSE,包括Nb和Ti等)为特征,其早期侵入岩属于高钾钙碱性强过铝质S型花岗岩,具有明显的Th-U元素"U"型峰值以及Ti元素"V"型谷值,晚期侵入岩属于钾玄岩系列岩石,具有U元素"V"型尖峰值以及La-Nd和Eu-Ti元素"U"型谷值,二者在地球化学特征上存在较大的差异。结合岩浆源区性质的研究结果,早期侵入岩属于造山后花岗岩类,可能是源自泥质岩类部分熔融形成的岩浆,再经历高程度分离结晶作用形成的产物;而晚期侵入岩属于非造山花岗岩类,可能是源自泥质岩和砂屑岩类部分熔融形成的岩浆与幔源岩浆发生了不同程度的混合形成的产物。结合电英岩包体和寨滚锡多金属矿床中岩浆热液成矿阶段形成的电英岩脉在成因上存在亲缘关系,且其形成年龄与田棚岩体的形成年龄基本一致的特征,推测电英岩包体应为晚期侵入岩侵位过程中捕获早期侵入岩(田棚岩体)侵位过程中形成的岩浆热液型电英岩脉而形成的包体,其形成年龄可能代表了本区电英岩成矿阶段的成矿年龄。

关键词: 平英岩体, 电英岩, 年代学, 地球化学, 宝坛锡多金属成矿区, 桂北

Abstract: The polymetallic mineralization system of the Baotan Sn deposit frequent magmatic activities in northern Guangxi, the Pingying plutons are composed of early intrusions and late intrusions which is related to the polymetallic mineralization system of Sn deposit. The latter often contains more tourmalite-quartz enclaves. A study on petrology, zircon U-Pb geochronology and geochemistry, shows that the latest intrusive rocks in the Pingying granite pluton is composed of (medium) fine-grained porphyritic biotite (monzonite-) alkali feldspar granite. The U-Pb zircon dating results show that the formation age of the late intrusions was in (769.2±2.5) Ma, and that of the tourmaline-quartz spherulitic bodies was in (795.1±3.1) Ma. The Pingying plutons are generally characterized by rich large ion lithophile elements (LILE, including Rb, Th, U, etc.) and depleted high field strength elements (HFSE, including Nb, Ti, etc.). However, the early and late intrusions are quite different from each other in terms of geochemical characteristics:The early intrusions is belonging to high-K calc-alkaline strongly peraluminous S-type granite, with obvious "U"-shaped peaks for Th-U and "V"-shaped troughs for Ti on the trace elements spider diagram; While the late intrusions is belonging to the shoshonite series, which show "V"-shaped peaks for uranium (U) and "U"-shaped troughs for La-Nd and Eu-Ti on the trace elements spider diagram. According to the results of the study on the properties of the magma source region, the early intrusions belongs to the post-orogenic granite, and may be derived from magma generated by the partial melting of argillaceous rocks and then fractional crystallization of high degree; The late intrusions falls into the non-orogenic granite, and may be the product of the mixing of various degrees of magma and mantle-derived magma generated by the partial melting of argillaceous rocks and psammitolite. There was a genetic relationship between the tourmalite-quartz veins formed in magmatic water at the metallogenic stage of tourmalite-quartz enclaves combined with Zhaigun tin-polymetallic deposit. Moreover, the formation age was basically the same as that of Tianpeng rock mass. Therefore, it is speculated that the tourmalite-quartz enclaves were formed by late intrusive rock capturing the magmatic hydrothermal tourmalite-quartz vein formed during the emplacement of early intrusive rock (Tianpeng rock mass), and the formation age may represent the metallogenic age of tourmalite-quartz mineralization in this area.

Key words: Pingying granite pluton, tourmalite, chronology, geochemistry, Baotan tin polymetallic metallogenic area, northern Guangxi

中图分类号: 

  • P588.12
[1] 李洪英,杨磊,陈剑锋. 湖南桃江县木瓜园钨矿床地质特征及含矿岩体成岩时代[J]. 吉林大学学报(地球科学版),2019,49(5):1285-1300. Li Hongying, Yang Lei, Chen Jianfeng. Geological Characteristics and Diagenetic Age of Ore-Bearing Rock of Taojiang Muguayuan Tungsten Deposit in Hunan Province[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1285-1300.
[2] 毛景文. 桂北九万大山-元宝山地区锡多金属矿床的地质特征和成矿系列[J]. 矿床地质,1987,6(4):23-32. Mao Jingwen. Geological Features and Metallogenic Series of the Tin Polymetallic Deposits in Jiuwandashan-Yuanbaoshan Area, Northern Guangxi[J]. Mineral Deposits, 1987, 6(4):23-32.
[3] 毛景文. 桂北九万大山-元宝山地区火成岩系列和锡多金属矿床成矿系列[D]. 北京:中国地质科学院,1988. Mao Jingwen. Igneous Rock Series and Metallogenic Series of Tin Polymetallic Deposits in Jiuwandashan-Yuanbaoshan Region, Rorthern Guangxi[D]. Beijing:Chinese Academy of Geosciences, 1988.
[4] 毛景文,宋叔和,陈毓川. 桂北地区火成岩系列和锡多金属矿床成矿系列研究[M]. 北京:北京科学技术出版社,1988:1-196. Mao Jingwen, Song Shuhe, Chen Yuchuan. Igneous Rock Series and Metallogenic Series of Tin Polymetallic Deposits in North Guangxi Region[M]. Beijing:Beijing Science and Technology Publishing House, 1988:1-196.
[5] 陈毓川,毛景文. 桂北地区矿床成矿系列和成矿历史演化轨迹[M]. 南宁:广西科学技术出版社,1995:1-433. Chen Yuchuan, Mao Jingwen. Metallogenic Series of Ore Deposits and Metallogenic Evolution Through History in North Guangxi[M]. Nanning:Guangxi Science and Technology Press, 1995:1-433.
[6] 杨振军. 桂北清明山铜镍硫化物矿床地质地球化学特征及找矿预测[D]. 长沙:中南大学,2011. Yang Zhenjun. Geological,Geochemical Characteristics and Prospecting Prediction of Qingmingshan Cu-Ni Sulfide Deposit in Northern Guangxi, China[D]. Changsha:Central South University, 2011.
[7] 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志[M]. 北京:地质出版社,1985:1-853. Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region. Regional Geology of Guangxi Zhuang Autonomous Region[M]. Beijing:Geological Publishing House, 1985:1-853.
[8] 林进姜,杨开泰,马富君,等. 桂北平英花岗岩与锡矿成矿关系的初步研究[J]. 广西地质,1986,4(1):1-14. Lin Jinjiang, Yang Kaitai, Ma Fujun, et al. A Preliminary Study on Relation Between Pingying Granite and Tin Mineralization in North Guangxi[J]. Geology of Guangxi, 1986,4(1):1-14.
[9] 张世涛,马东升,陆建军,等. 桂北平英花岗岩锆石U-Pb年代学、Hf同位素、地球化学特征及其地质意义[J]. 高校地质学报,2016,22(1):92-104. Zhang Shitao, Ma Dongsheng, Lu Jianjun, et al. Geochronology, Hf Isotopic Compositions and Geochemical Characteristics of the Pingying Granite Pluton in Northern Guangxi, South China, and Its Geological Significance[J]. Geological Journal of China Universities, 2016, 22(1):92-104.
[10] Chen L, Wang Z Q, Yan Z, et al. Zircon and Cassiterite U-Pb Ages, Petrogeochemistry and Metallogenesis of Sn Deposits in the Sibao Area, Northern Guangxi:Constraints on the Neoproterozoic Granitic Magmatism and Related Sn Mineralization in the Western Jiangnan Orogen, South China[J]. Mineralogy and Petrology, 2018, 112:437-463.
[11] Zhang S T, Zhang R Q, Lu J J, et al. Neoproterozoic Tin Mineralization in South China:Geology and Cassiterite U-Pb Age of the Baotan Tin Deposit in Northern Guangxi[J]. Mineralium Deposita, 2019, 54:1125-1142.
[12] 林进姜,马富君,杨开泰,等. 宝坛锡矿床地球化学及稳定同位素地质研究[J]. 广西地质,1986,4(2):23-31. Lin Jinjiang, Ma Fujun, Yang Kaitai, et al. Study on Geochemistry and Geology of Stable Isotope in Baotan Tin Deposit, Guangxi[J]. Geology of Guangxi, 1986,4(2):23-31.
[13] 董宝林,覃杰宝. 宝坛地区花岗岩类同位素年龄数据的讨论[J]. 广西地质,1987,5(2):47-53. Dong Baolin, Qin Jiebao. Discussion on Isotopic Age Data of Granitoids in Baotan Area[J]. Geology of Guangxi, 1987,5(2):47-53.
[14] Chen X, Wang D, Wang X L, et al. Neoproterozoic Chromite-Bearing High-Mg Diorites in the Western Part of the Jiangnan Orogen, Southern China:Geochemistry, Petrogenesis and Tectonic Implications[J]. Lithos, 2014, 200/201:35-48.
[15] 高林志, 戴传固, 刘燕学, 等. 黔东南-桂北四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J]. 地质通报,2010, 29(9):1259-1267. Gao Linzhi, Dai Chuangu, Liu Yanxue, et al. Zircon SHRIMP U-Pb Dating of Tuff Bed of the Sibao Group in Southeastern Guizhou-Northern Guangxi Area, China and Its Stratigraphic Implication[J]. Geological Bulletin of China, 2010,29(9):1259-1267.
[16] 李利阳, 游国庆, 张传恒, 等. 桂北四堡群火山岩锆石SHRIMP年龄及其地层学意义[J]. 中国地质, 2016, 43(6):1992-1998. Li Liyang, You Guoqing, Zhang Chuanheng, et al. SHRIMP Age of the Lava from the Sibao Group in Guilin and Its Chronostratigraphic Significance[J]. Geology in China, 2016, 43(6):1992-1998.
[17] 林进姜,杨开泰,马富君,等. 桂北平英花岗岩与锡矿成矿关系的初步研究[J]. 广西地质,1986,4(1):1-14. Lin Jinjiang, Yang Kaitai, Ma Fujun, et al. A Preliminary Study on Relation Between Pingying Granite and Tin Mineralization in North Guangxi[J]. Geology of Guangxi, 1986, 4(1):1-14.
[18] Zhang S T, Zhang R Q, Lu J J, et al. Neoproterozoic Tin Mineralization in South China:Geology and Cassiterite U-Pb Age of the Baotan Tin Deposit in Northern Guangxi[J]. Mineralium Deposita, 2019, 54:1125-1142.
[19] Simon E J, Norman J P, William L G, et al. Belousova the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology[J]. Chemical Geology, 2004, 211:47-69.
[20] 李怀坤,耿建珍,郝爽,等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物岩石地球化学通报,2009,28(增刊):77. Li Huaikun, Geng Jianzhen, Hao Shuang, et al. Research on the Dating Zircon U-Pb Age by LA- MC-ICPMS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(Sup.):77.
[21] 李怀坤,朱士兴,相振群,等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报,2010,26(7):2131-2140. Li Huaikun, Zhu Shixing, Xiang Zhenqun, et al. Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7):2131-2140.
[22] Ludwig K R. User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.
[23] Pupin J P. Zircon and Granite Petrology[J]. Contributions to Mineralogy and Petrology, 1980, 73:207-220.
[24] Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J]. Journal of Microscopy, 1993, 171:223-232.
[25] 黎彤,袁怀雨,吴胜昔. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J].大地构造与成矿学,1998,22(1):24-29. Li Tong, Yuan Huaiyu, Wu Shengxi. Onthe Average Chemical Composition of Granitoids in China and the World[J]. Geotectonica et Metallogenia, 1998, 22(1):24-29.
[26] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth Science Reviews, 1994, 37:215-224.
[27] De La Roche H, Leterrier J, Grandclaude P, et al. A Classification of Volcanic and Plutonic Rocks Using R1-R2 Diagram and Major-Element Analyses:Its Relationships with Current Nomenclature[J]. Chemical Geology, 1980, 29(1/2/3/4):183-210.
[28] Richwood P. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263.
[29] Morrison G W. Characteristics and Tectonic Setting of the Shoshonite Rock Association[J]. Lithos, 1980, 13:97-108.
[30] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins. London:Special Publication, 1989:313-345.
[31] Wilson M B. Igneous Petrogenesis:A Global Tectonic Approach[M]. London:Springer, 1989:1-466.
[32] 赵一鸣,林文蔚,毕承思. 中国矽卡岩矿床[M]. 北京:地质出版社,1990:232-256. Zhao Yiming, Lin Wenwei, Bi Chengsi. Skarn Deposits in China[M]. Beijing:Geological Publishing House, 1990:232-256.
[33] Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China:Implications for Tectonic Evolution[J]. Precambrian Research, 2006, 145(1/2):111-130.
[34] Wang X L, Zhou J C, Griffin W L, et al. Geochemical Zonation Across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China[J]. Precambrian Research, 2014, 242:154-171.
[35] 张世涛. 桂北宝坛新元古代花岗岩与脉型锡矿床的成矿关系及成因研究[D]. 南京:南京大学,2015. Zhang Shitao. Genetic Relationship Between the Neoproterozoic Granite and Tin Deposit in Baotan of Northern Guangxi, South China[D]. Nanjing:Nanjing Universities, 2015.
[36] Chappell B W, White A J R. I- and S-Type Granites in the Lachlan Fold Belt[J]. Trans R Soc Edinb Earth Sci, 1992, 83:1-26.
[37] Sylvester P J. Post-Collisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45:29-44.
[38] Batchelor R A, Bowden P. Petrogentic Interpretation of Granitoid Rocks Series Using Multicationic Parameters[J]. Chemical Geology, 1985, 48:43-55.
[39] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Bulletin of the Geological Society of America, 1989, 101:635-643.
[40] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25:956-983.
[1] 田兴旺, 罗冰, 孙奕婷, 刘冉, 李亚, 陈延贵, 周春林, 汪华, 李亚丁, 王尉, 王云龙, 杨岱林. 二叠系火山碎屑岩气藏天然气地球化学特征及气源分析——以四川盆地成都—简阳地区永探1井为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 325-335.
[2] 岳悦, 孙德有, 侯可军, 彭银彪. 柴北缘乌兰北部三叠纪辉长岩的年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 154-168.
[3] 陆胜, 王可勇, 赵焕利, 相雷, 刘阳, 张志博. 大兴安岭漠河前哨林场侵入岩年代学、岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 126-140.
[4] 王宇晴, 董春艳, 白文倩, 颉颃强, 万渝生. 鲁西莲花山地区新太古代晚期二长花岗岩中的表壳岩包体——SHRIMP锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 141-153.
[5] 李守奎, 张世涛, 赵庆红, 黎明. 滇西兰坪皂角场新生代富碱斑岩体锆石U-Pb年代学及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 169-184.
[6] 尹志刚, 宫兆民, 王春生, 刘松杰, 张圣听, 王冠群, 周小刚, 张志浩. 小兴安岭平顶山一带早侏罗世花岗岩类年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 107-125.
[7] 董洋, 刘苏, 张思佳. 辽东岫岩王家堡子地区二长花岗岩U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1720-1736.
[8] 彭游博, 刘文彬, 赵军, 崔育崧, 杨成会, 赵辰, 温聪. 辽南岩体LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义——以盖州万福-岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1737-1751.
[9] 孙立影, 杨晨, 赵海士, 常志勇. 基于极限学习机的遥感地球化学反演模型[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1929-1938.
[10] 李玉超, 王诚煜, 于成广. 辽宁丹东地区土壤Se元素地球化学特征及其影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1766-1775.
[11] 张新远, 李五福, 王春涛, 刘建栋, 欧阳光文. 青海拉脊山东段白家藏侵入岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1703-1719.
[12] 豆世勇. 辽北开原地区房木花岗斑岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1752-1765.
[13] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[14] 熊光强, 刘敏, 张达, 王忠. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.
[15] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323-1339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!