吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 951-956.doi: 10.13278/j.cnki.jjuese.20200210

• 地球探测与信息技术 • 上一篇    

3种经典机器学习算法在火山岩测井岩性识别中的对比

牟丹, 张丽春, 徐长玲   

  1. 北华大学数学与统计学院, 吉林 吉林 132013
  • 收稿日期:2020-09-17 出版日期:2021-05-26 发布日期:2021-06-07
  • 通讯作者: 张丽春(1982—),女,副教授,博士,主要从事偏微分方程数值解方面的研究及其应用,E-mail:54177867@qq.com E-mail:54177867@qq.com
  • 作者简介:牟丹(1986—),女,讲师,博士,主要从事地球物理测井相关方面的研究,E-mail:mudan-main@163.com
  • 基金资助:
    吉林省教育厅"十三五"科学技术项目(JJKH20170023KJ);国家重点基础研究发展计划("973 "计划)项目(2012CB822002)

Comparison of Three Classical Machine Learning Algorithms for Lithology Identification of Volcanic Rocks Using Well Logging Data

Mou Dan, Zhang Lichun, Xu Changling   

  1. School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin, China
  • Received:2020-09-17 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the Science and Technology Project of Jilin Province Department of Education During the "13th Five-Year" Plan Period (JJKH20170023KJ) and the National Key Basic Research and Development Program of China ("973" Program)(2012CB822002)

摘要: 岩性识别一直是火山岩油气勘探中的重要课题,基于测井数据的岩性识别也逐渐成为火山岩研究的需要,大数据背景下的机器学习算法为测井岩性识别提供了一个新方向。为提高某研究区火山岩岩性识别符合率,本文采用K近邻、支持向量机和自适应增强3种经典机器学习算法,对研究区内的粗面岩、非致密粗面岩、辉绿岩、辉长岩、玄武岩和非致密玄武岩等6类中基性火山岩进行岩性识别。从常规测井系列中优选对研究区岩性敏感的自然伽马、声波时差、补偿中子、深侧向电阻率和补偿密度等5种测井参数作为岩性识别模型的输入向量,从研究区内5口有岩心样品或薄片鉴定资料的目标层中选取测井数据点1 440个,其中960个作为训练样本,其余480个作为测试样本。以识别符合率和时间作为评价指标,对3种算法的识别结果进行对比分析,实验表明:自适应增强算法的分类准确率最高,6类岩性平均识别符合率达到82.10%;支持向量机算法表现良好,平均识别符合率为81.04%;K近邻算法平均识别符合率为76.04%。

关键词: K近邻, 支持向量机, 自适应增强算法, 火山岩, 岩性识别

Abstract: Lithology identification has always been an important project in oil and gas exploration of volcanic rocks, and based on logging data, it has become a need for volcanic rock research. Machine learning algorithms under the background of big data provide a new direction for logging lithology identification. In order to improve the lithology recognition accuracy of volcanic rocks in the study area, K-nearest neighbor (KNN), support vector machine (SVM), and adaptive boosting (Ada Boosting) various classic machine learning algorithms are used here to identify six types of volcanic rocks,which consist of basalt, non-compacted basalt, trachyte, non-compacted trachyte, gabbro and diabase. Five types of well logging parameters sensitive to the lithology of the study area are selected from the conventional logging series as input vectors. 1 440 logging data points are selected from five wells with core samples or segmented data, 960 of them are used as training samples, and the remaining 480 are used as test samples. Using recognition accuracy and time as evaluation indicators, the recognition results of the three algorithms are compared and analyzed. The experiments show that the classification accuracy of the Ada Boosting algorithm is the highest with an average recognition rate of 82.10% for six types of lithology; The SVM algorithm performs well with an average recognition rate of 81.04%; The recognition rate of KNN algorithm is 76.04%.

Key words: K nearest neighbor, support vector machine, Ada Boosting, volcanic rocks, lithology identification

中图分类号: 

  • P631.8
[1] 严伟,刘帅,冯明刚,等. 四川盆地丁山区块页岩气储层关键参数测井评价方法[J].岩性油气藏, 2019, 31(3): 95-104. Yan Wei, Liu Shuai, Feng Minggang, et al. Well Logging Evaluation Methods of Key Parameters for Shale Gas Reservoir in Ding-Shan Block, Sichuan Basin[J]. Lithologic Reservoirs, 2019, 31(3): 95-104.
[2] 王璞珺,缴洋洋,杨凯凯,等. 准噶尔盆地火山岩分类研究与应用[J].吉林大学学报(地球科学版), 2016, 46(4): 1056-1070. Wang Pujun, Jiao Yangyang, Yang Kaikai, et al. Classification of Volcanogenic Successions and Its Application to Volcanic Reservoir Exploration in the Junggar Basin, NW China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1056-1070.
[3] Wang W H, Wang P J, Wang Z W, et al. Identifying the Lithology of Volcanic Rocks by Using the Time-Frequency Features of Array Acoustic Logging Data[J]. Interpretation, 2020, 8(3): 1-38.
[4] 于洋,王祝文,宁琴琴,等.松辽盆地大庆长垣四方台组可地浸砂岩铀成矿测井评价[J].吉林大学学报(地球科学版), 2020,50(3):929-940. Yu Yang, Wang Zhuwen, Ning Qinqin, et al. Logging Evaluation of in Situ Leachable Sandstone Uranium Mineralization in Sifangtai Formation of Daqing Placantic Line, Songliao Basin[J].Journal of Jilin University (Earth Science Edition), 2020, 50(3): 929-940.
[5] 覃瑞东,林振洲,潘和平,等. 木里地区水合物及岩性测井识别方法[J].物探与化探, 2017, 41(6): 1088-1098. Qin Ruidong, Lin Zhenzhou, Pan Heping, et al. Identification of Hydrate and Lithology Based on Well Logs in Muli Area[J]. Geophysical and Geochemical Exploration, 2017, 41(6): 1088-1098.
[6] 冯冲,王清斌,谭忠健,等. 富火山碎屑地层复杂岩性测井分类与识别:以KL16油田为例[J].石油学报, 2019, 40(增刊2): 91-101. Feng Chong, Wang Qingbin, Tan Zhongjian, et al. Logging Classification and Identification of Complex Lithologies in Volcanic Debris-Rich Formations: An Example of KL16 Oilfield[J]. Acta Petrolei Sinica, 2019, 40(Sup.2): 91-101.
[7] 徐苗苗,印兴耀,宗兆云,等. 基于复合蛙跳算法的火山岩最优化测井解释方法[J].石油物探, 2020, 59(1): 122-130. Xu Miaomiao, Yin Xingyao, Zong Zhaoyun, et al. Logging Interpretation Optimization of Volcanic Rocks Using the Complex Frog-Leaping Algorithm[J]. Geophysical Prospecting for Petroleum, 2020, 59(1): 122-130.
[8] 孙予舒,黄芸,梁婷,等. 基于XG-Boost算法的复杂碳酸盐岩岩性测井识别[J].岩性油气藏, 2020, 32(4): 98-106. Sun Yushu, Hang Yun, Liang Ting, et al. Identification of Complex Carbonate Lithology by Logging Based on XG-Boost Algorithm[J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
[9] 张野,李明超,韩帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J].岩石学报, 2018, 34(2): 333-342. Zhang Ye, Li Mingchao, Han Shuai. Automatic Identification and Classification in Lithology Based on Deep Learning in Rock Images[J]. Acta Petrologica Sinica, 2018, 34(2): 333-342.
[10] 杨笑,王志章,周子勇,等. 基于参数优化Ada Boost算法的酸性火山岩岩性分类[J].石油学报, 2019, 40(4): 457-467. Yang Xiao, Wang Zhizhang, Zhou Ziyong, et al. Lithology Classification of Acidic Volcanic Rocks Based on Parameter-Optimized Ada Boost Algorithm[J]. Acta Petrolei Sinica, 2019, 40(4): 457-467.
[11] 苏赋,马磊,罗仁泽,等. 基于改进多分类孪生支持向量机的测井岩性识别方法研究与应用[J].地球物理学进展, 2020, 35(1): 174-180. Su Fu, Ma Lei, Luo Renze, et al. Research and Application of Logging Lithology Identification Based on Improve Multi-Class Twin Support Vector Machine[J]. Progress in Geophysics, 2020, 35(1): 174-180.
[12] 牟丹,王祝文,黄玉龙,等. 基于SVM 测井数据的火山岩岩性识别:以辽河盆地东部坳陷为例[J]. 地球物理学报, 2015, 58(5): 1785-1793. Mou Dan, Wang Zhuwen, Huang Yulong, et al. Lithological Identification of Volcanic Rocks from SVM Well Logging Data: Case Study in the Eastern Depression of Liaohe Basin Chinese[J]. Journal of Geophysics, 2015, 58(5): 1785-1793.
[13] Glowacz A, Glowacz Z. Recognition of Images of Finger Skin with Application of Histogram, Image Filtration and K-NN Classifier[J]. Biocybernetics and Biomedical Engineering, 2016, 36(1): 95-101.
[14] Rastegarzadeh G, Nemati M. Primary Mass Discrimination of High Energy Cosmic Rays Using PNN and K-NN Methods[J]. Advances in Space Research,2018, 61(4): 1181-1191.
[15] 曹莹,苗启广,刘家辰,等. Ada Boost算法研究进展与展望[J].自动化学报, 2013, 39(6): 745-758. Cao Ying, Miao Qiguang, Liu Jiachen, et al. Advance and Prospects of Ada Boost Algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758.
[1] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
[2] 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138.
[3] 王博帅, 蒲东川, 李婷婷, 牛雪峰. 基于多源遥感影像的长春市城市建成区提取[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1284-1294.
[4] 刘云鹏, 郭春影, 秦明宽, 吴玉, 裴柳宁. 基于PCA-SVM算法对稀土元素与稀土判别指标耦合数据集的铀矿床分类[J]. 吉林大学学报(地球科学版), 2021, 51(3): 723-733.
[5] 王恒, 姜亚楠, 张欣, 仲鸿儒, 陈庆轩, 高世臣. 基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 940-950.
[6] 邹国庆, 余牛奔, 孙国庆, 黄修保, 尼加提·阿布都逊, 卢观送. 东准噶尔奥依托浪格地区石炭纪双峰式火山岩地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 455-472.
[7] 吴燕清, 王世成, 丁园, 王文正, 余弘龙, 王青, 李杨. 内蒙古新城子盆地铀及多金属矿产勘查遥感应用[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1917-1928.
[8] 葛海龙, 张艳, 王圣柱, 杨凯凯, 刘晓康, 边伟华. 西准噶尔萨吾尔地区吉木乃组火山岩锆石U-Pb年代学、地球化学特征及构造背景[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1075-1089.
[9] 苗长盛, 徐文, 刘玉虎, 谢荣祥. 松辽盆地南部火山岩储层特征[J]. 吉林大学学报(地球科学版), 2020, 50(2): 635-643.
[10] 张书义. 内蒙古新巴尔虎右旗塔木兰沟组火山岩年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 129-138.
[11] 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014.
[12] 尹超, 周爱红, 袁颖, 王帅伟. 基于邻域粗糙集和支持向量机的固结系数预测[J]. 吉林大学学报(地球科学版), 2019, 49(3): 746-754.
[13] 叶涛, 韦阿娟, 黄志, 赵志平, 肖述光. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 872-879.
[14] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 611-620.
[15] 张超, 吴新伟, 张渝金, 郭威, 权京玉. 龙江盆地中生代火山岩锆石U-Pb年代学及其对基底性质的制约[J]. 吉林大学学报(地球科学版), 2019, 49(2): 460-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[2] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[3] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .
[4] 薛永超, 程林松, 付 广. 大庆长垣以东地区登二段泥质岩盖层封气能力综合评价[J]. J4, 2005, 35(05): 626 -631 .
[5] 迟宝明,易树平,李治军,周彦章. 大连地区水资源人工调控研究[J]. J4, 2005, 35(05): 632 -635 .
[6] 梁秀娟, 林学钰, 于 军. 虚拟现实技术在水文地质研究中的应用[J]. J4, 2005, 35(05): 636 -640 .
[7] 田 梦,张梅生,任延广,乔秀云,万传彪,刘鹏举. 松辽盆地新站地区嫩江组三段孢粉-藻类组合及其环境[J]. J4, 2005, 35(04): 449 -0455 .
[8] 宋来明,杨永强,彭仕宓,李海燕. 冀东高尚堡油田Es2+33层序地层学研究[J]. J4, 2005, 35(04): 462 -0468 .
[9] 刘菁华,王祝文,刘树田,王晓丽. 城市活动断裂带的土壤氡、汞气评价方法[J]. J4, 2006, 36(02): 295 -0297 .
[10] 刘祥. 长白山火山历史上最大火山爆发火山碎屑物层序与分布[J]. J4, 2006, 36(03): 313 -318 .