吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1597-1604.doi: 10.13278/j.cnki.jjuese.20200291
熊越晗1, 刘东燕1, 刘东升2, 王艳磊2, 唐小山3
Xiong Yuehan1, Liu Dongyan1, Liu Dongsheng2, Wang Yanlei2, Tang Xiaoshan3
摘要: 在现阶段的岩土工程中,通常采用人工识别的方法来判别岩样种类,不仅耗时长、专业性强,还易受主观因素影响,准确率不理想。随着计算机技术的发展,机器学习逐渐被应用于岩性的自动识别,开启了岩样分类的新路径。本文以重庆市主城区4种典型岩样(泥岩、砂质泥岩、泥质砂岩和砂岩)的细观图像为研究对象,基于Inception V3卷积网络模型和迁移学习算法,建立了岩样细观图像深度学习模型,并完成了训练学习。结果显示:模型在训练1 000次后,训练集中的分类准确率达到92.77%,验证集中的分类准确率为76.31%。其中,验证集中的砂岩识别准确率为97.28%,泥岩识别准确率为81.85%,泥质砂岩识别准确率为72.59%,砂质泥岩识别准确率为72.35%。与现有的机器学习方法相比,本识别模型不仅可以自动识别岩性极为相近的岩样,而且具有较好的识别准确率、鲁棒性和泛化能力。
中图分类号:
[1] 陈建平, 李婧, 崔宁, 等.大数据背景下地质云的构建与应用[J]. 地质通报, 2015, 34(7):1260-1265. Chen Jianping, Li Jing, Cui Ning, et al. The Construction and Application of Geological Cloud Under the Big Data Background[J]. Geological Bulletin of China, 2015, 34(7):1260-1265. [2] 肖克炎, 孙莉, 李楠, 等.大数据思维下的矿产资源评价[J]. 地质通报, 2015, 34(7):1266-1272. Xiao Keyan, Sun Li, Li Nan, et al. Mineral Resources Assessment Under the Thought of Big Data[J]. Geological Bulletin of China, 2015, 34(7):1266-1272. [3] 严光生, 薛群威, 肖克炎, 等.地质调查大数据研究的主要问题分析[J]. 地质通报, 2015, 34(7):1273-1279. Yan Guangsheng, Xue Qunwei, Xiao Keyan, et al. An Analysis of Major Problems in Geological Survey Big Data[J]. Geological Bulletin of China, 2015, 34(7):1273-1279. [4] 赵鹏大.大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7):1255-1259. Zhao Pengda. Digital Mineral Exploration and Quantitative Evaluation in the Big Data Age[J]. Geological Bulletin of China, 2015, 34(7):1255-1259. [5] 刘延保, 曹树刚, 刘玉成.基于LS-SVM的岩石细观图像分析方法探讨[J]. 岩石力学与工程学报, 2008, 27(5):1059-1065. Liu Yanbao, Cao Shugang, Liu Yucheng. Discussion on Analytical Method for LS-SVM Based Mesoscopic Rock Images[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5):1059-1065. [6] Singh N, Singh T N, Tiwary A, et al. Textural Identification of Basaltic Rock Mass Using Image Processing and Neural Network[J]. Computational Geosciences, 2010, 14(2):301-310. [7] Młynarczuk M, Górszczyk A, Ślipek B. The Application of Pattern Recognition in the Automatic Classification of Microscopic Rock Images[J]. Computers & Geosciences, 2013, 60(5):126-133. [8] 郭超, 刘烨.多色彩空间下的岩石图像识别研究[J]. 科学技术与工程, 2014, 14(18):247-251, 255. Guo Chao, Liu Ye. Recognition of Rock Images Based on Multiple Color Spaces[J]. Science Technology and Engineering, 2014, 14(18):247-251, 255. [9] 程国建, 杨静, 黄全舟, 等.基于概率神经网络的岩石薄片图像分类识别研究[J]. 科学技术与工程, 2013, 13(31):9231-9235. Cheng Guojian, Yang Jing, Huang Quanzhou, et al. Rock Image Classification Recognition Based on Probabilistic Neural Networks[J]. Science Technology and Engineering, 2013, 13(31):9231-9235. [10] 刘烨, 程国建, 马微, 等.基于铸体薄片图像颜色空间与形态学梯度的岩石分类[J]. 中南大学学报(自然科学版), 2016, 47(7):2375-2382. Liu Ye, Cheng Guojian, Ma Wei, et al. Rock Classification Based on Features Form Color Space and Morphological Gradient of Rock Thin Section Image[J]. Journal of Central South University(Science and Technology), 2016, 47(7):2375-2382. [11] 程国建, 刘丽婷.深度学习算法应用于岩石图像处理的可行性研究[J]. 软件导刊, 2016, 15(9):163-166. Cheng Guojian, Liu Liting. Feasibility Study of Deep Learning Algorithm Applied to Rock Image Processing[J]. Software Guide, 2016, 15(9):163-166. [12] 张野, 李明超, 韩帅.基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 2018, 34(2):333-342. Zhang Ye, Li Mingchao, Han Shuai. Automatic Identification and Classification in Lithology Based on Deep Learning in Rock Images[J]. Acta Petrologica Sinica, 2018, 34(2):333-342. [13] 白林, 姚钰, 李双涛, 等.基于深度学习特征提取的岩石图像矿物成分分析[J]. 中国矿业, 2018, 27(7):178-182. Bai Lin, Yao Yu, Li Shuangtao, et al. Mineral Composition Analysis of Rock Image Based on Deep Learning Feature Extraction[J]. China Mining Magazine, 2018, 27(7):178-182. [14] 白林, 魏昕, 刘禹, 等.基于VGG模型的岩石薄片图像识别[J]. 地质通报, 2019, 38(12):2053-2058. Bai Lin, Wei Xin, Liu Yu, et al. Rock Thin Section Image Recognition and Classification Based on VGG Model[J]. Geological Bulletin of China, 2019, 38(12):2053-2058. [15] 王恒, 姜亚楠, 张欣, 等.基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 2021, 51(3):940-950. Wang Heng, Jiang Yanan, Zhang Xin, et al. Lithology Identification Method Based on Gradient Boosting Algorithm[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3):940-950. [16] 刘云鹏, 郭春影, 秦明宽, 等.基于PCA-SVM算法对稀土元素与稀土判别指标耦合数据集的铀矿床分类[J]. 吉林大学学报(地球科学版), 2021, 51(3):723-733. Liu Yunpeng, Guo Chunying, Qin Mingkuan, et al. Classfication of Uranium Deposits Based on PCA-SVM Algorithm for Coupling Data Set of Rare Earth Elements and Rare Earth Discrimination Indexes[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3):723-733. [17] Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:Hynes Convention Center, 2015:1-9. [18] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:Caesars Palace, 2016:2818-2826. [19] Lin M, Chen Q, Yan S C. Network in Network[EB/OL]. ArXiv Preprint, 2013:(2013-12-16)[2020-11-21]. arxiv.org/abs/1312.4400. [20] 程国建, 范鹏召.基于深度信念网络的岩石粒度分类[J]. 西安石油大学学报(自然科学版), 2018, 33(3):107-112. Cheng Guojian, Fan Pengzhao. Analysis of Rock Granularity by Deep Belief Network[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2018, 33(3):107-112. [21] 程国建, 马微, 魏新善, 等.基于图像处理与神经网络的岩石组构识别[J]. 西安石油大学学报(自然科学版), 2013, 28(5):105-110. Cheng Guojian, Ma Wei, Wei Xinshan, et al. Research of Rock Texture Identification Based on Image Processing and Neural Network[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2013, 28(5):105-110. |
[1] | 王恒, 姜亚楠, 张欣, 仲鸿儒, 陈庆轩, 高世臣. 基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 940-950. |
[2] | 牟丹, 张丽春, 徐长玲. 3种经典机器学习算法在火山岩测井岩性识别中的对比[J]. 吉林大学学报(地球科学版), 2021, 51(3): 951-956. |
[3] | 王新民, 张超超. 基于深度学习的旧金山湾水质预测[J]. 吉林大学学报(地球科学版), 2021, 51(1): 222-230. |
[4] | 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159. |
[5] | 王英伟, 张建民, 王满, 潘保芝, 邢艳娟, 石丹红. 基于序贯指示模拟方法的火山岩储层岩性及孔隙度模拟[J]. J4, 2010, 40(2): 455-460. |
[6] | 张治国,杨毅恒,夏立显. RPROP算法在测井岩性识别中的应用[J]. J4, 2005, 35(03): 389-0393. |
[7] | 周波,李舟波,潘保芝. 火山岩岩性识别方法研究[J]. J4, 2005, 35(03): 394-0397. |
|