吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 940-950.doi: 10.13278/j.cnki.jjuese.20200081

• 地球探测与信息技术 • 上一篇    下一篇

基于梯度提升算法的岩性识别方法

王恒1, 姜亚楠1, 张欣1, 仲鸿儒2, 陈庆轩3, 高世臣1   

  1. 1. 中国地质大学(北京)数理学院, 北京 100083;
    2. 中国地质大学(北京)信息工程学院, 北京 100083;
    3. 中国石油长庆油田分公司第五采气厂, 西安 750006
  • 收稿日期:2020-04-09 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:王恒(1997—),男,硕士研究生,主要从事机器学习和岩性识别方面的研究,E-mail:283885553@qq.com
  • 基金资助:
    国家科技重大专项项目(2016ZX05050)

Lithology Identification Method Based on Gradient Boosting Algorithm

Wang Heng1, Jiang Yanan1, Zhang Xin1, Zhong Hongru2, Chen Qingxuan3, Gao Shichen1   

  1. 1. School of Mathematics and Physics, China University of Geosciences, Beijing 100083, China;
    2. School of Information Engineering, China University of Geosciences, Beijing 100083, China;
    3. Fifth Gas Production Plant of PetroChina Changqing Oilfield Company, Xi'an 750006, China
  • Received:2020-04-09 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the National Science and Technology Major Project (2016ZX05050)

摘要: 传统的岩性识别方法如岩屑录井、钻井取心及测井资料解释等技术,对录井质量的依赖程度较高,识别精度与效率低,泛化能力差。随着计算机技术的迅速发展,将测井资料与计算机技术相结合开展岩性研究已成为岩性识别的有效手段。本文提出了一种基于梯度提升算法XGBoost和LightGBM的岩性识别方法。以苏里格气田苏东41-33区块下碳酸盐岩储层为例进行测试验证,采用该方法结合测井资料中的声波时差、自然伽马、光电吸收截面指数、密度、深侧向电阻率和补偿中子等6种参数进行岩性识别,并与KNN (K近邻分类器)、朴素贝叶斯和支持向量机等传统算法进行对比,结果表明,3种传统算法的岩性识别准确率分别为78.45%、74.43%和78.72%,基于梯度提升算法XGBoost和LightGBM的识别准确率分别达到了98.90%和98.72%,远高于传统算法。

关键词: 岩性识别, 梯度提升算法, 碳酸盐岩, 决策树

Abstract: Traditional lithology identification methods, such as cuttings logging, drilling coring, and logging data interpretation techniques, are highly dependent on logging quality, have low identification accuracy and efficiency, and have poor generalization capabilities. With the rapid development of computer technology, combining logging data with computer technology to carry out lithology research has become an effective means of lithology identification. This paper proposes a lithology recognition method based on gradient boosting algorithms XGBoost and LightGBM. Taking the lower carbonate reservoir in Block 41-33 of Sudong gas field in Sulige gas field as an example, test and verify it, using the acoustic time difference, natural gamma, photoelectric absorption cross-section index, density, and deep lateral resistivity in the logging data. Lithology identification is carried out with six parameterssuch as compensation neutron, and compared with traditional algorithms such as KNN, naive Bayes and support vector machine. The results show that the accuracy of lithology identification of the three traditional algorithms is 78.45%,74.43% and 78.72%, the recognition accuracy rates of XGBoost and LightGBM based on gradient boosting algorithms reached 98.90% and 98.72% respectively, which are much higher than traditional algorithms.

Key words: lithology identification, gradient boosting algorithm, carbonate rock, decision tree

中图分类号: 

  • TP181
[1] 马峥,张春雷,高世臣. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏,2017, 29(5): 127-133. Ma Zheng, Zhang Chunlei, Gao Shichen. Lithology Identification Based on Principal Component Analysis and Fuzzy Recognition[J]. Lithologic Reservoirs, 2017, 29(5): 127-133.
[2] 叶涛,韦阿娟,黄志,等. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版),2019, 49(3): 873-880. Ye Tao, Wei Ajuan, Huang Zhi, et al. Quantitative Identification of Volcanic Lithology Based on Comprehensive Principal Component Analysis and Bayes Discriminant Method:A Case Study of Mesozoic in Bohai Bay[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 873-880.
[3] 韩启迪,张小桐,申维. 基于梯度提升决策树(GBDT)算法的岩性识别技术[J]. 矿物岩石地球化学通报,2018, 37(6): 1173-1180. Han Qidi, Zhang Xiaotong, Shen Wei. Lithology Identification Technology Based on Gradient Boosting Decision Tree (GBDT) Algorithm[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2018, 37(6): 1173-1180.
[4] 叶倩怡,饶泓,姬名书. 基于Xgboost的商业销售预测[J]. 南昌大学学报(理科版),2017, 41(3): 275-281. Ye Qianyi, Rao Hong, Ji Mingshu. Sales Prediction of Stores Based on Xgboost Algorithm[J]. Journal of Nanchang University (Natural Science), 2017, 41(3): 275-281.
[5] 曹莹,苗启广,刘家辰,等. AdaBoost算法研究进展与展望[J]. 自动化学报,2013, 39(6): 745-758. Cao Ying, Miao Qiguang, Liu Jiachen, et al. Advance and Prospects of Ada Boost Algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758.
[6] Friedman J H. Greedy Function Approximation: Gradient Boosting Machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232.
[7] 王华勇,杨超,唐华. 基于LightGBM改进的GBDT短期负荷预测研究[J]. 自动化仪表,2018, 39(9): 76-78, 82. Wang Huayong, Yang Chao, Tang Hua. Research on the Short-Term Load Forecasting Using Improved GBDT Based on LightGBM[J]. Process Automation Instrumentation, 2018, 39(9): 76-78, 82.
[8] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
[9] Ke G, Meng Q, Finley T, et al. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree[C]//31st Conference on Neural Information Processing Systems(NIPS 2017). Long Beach: Advances in Neural Information Processing Systems,2017: 3146-3154.
[10] 马晓君,沙靖岚,牛雪琪. 基于LightGBM算法的P2P项目信用评级模型的设计及应用[J]. 数量经济技术经济研究,2018, 35(5): 144-60. Ma Xiaojun, Sha Jinglan, Niu Xueqi. An Empirical Study on the Credit Rating of P2P Projects Based on LightGBM Algorithm[J]. The Journal of Quantitative & Technical Economics, 2018, 35(5): 144-60.
[11] 袁照威,段正军,张春雨,等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释[J]. 新疆石油地质,2017, 38(1): 96-102. Yuan Zhaowei, Duan Zhengjun, Zhang Chunyu,et al. Interpretation of Logging Lithology in Carbonate Reservoirs Based on Markov Chain Probability Model[J]. Xinjiang Petroleum Geology, 2017, 38(1): 96-102.
[12] 张涛,莫修文. 基于交会图与模糊聚类算法的复杂岩性识别[J]. 吉林大学学报(地球科学版),2007,37(1): 109-113. Zhang Tao, Mo Xiuwen. Complex Lithologic Identification Based on Cross Plot and Fuzzy Clustering Algorithm[J]. Journal of Jilin University(Earth Science Edition), 2007,37(1): 109-113.
[13] 王振洲,张春雷,高世臣. 利用决策树方法识别复杂碳酸盐岩岩性:以苏里格气田苏东41-33区块为例[J]. 油气地质与采收率,2017, 24(6): 25-33. Wang Zhenzhou, Zhang Chunlei, Gao Shichen. Lithology Identification of Complex Carbonate Rocks Based on Decision Tree Method: An Example from Block Sudong 41-33 in Sulige Gas Field[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(6): 25-33.
[14] 江凯,王守东,胡永静,等. 基于Boosting Tree算法的测井岩性识别模型[J]. 测井技术,2018, 42(4): 395-400. Jiang Kai, Wang Shoudong, Hu Yongjing,et al. Lithology Identification Model by Well Logging Based on Boosting Tree Algorithm[J]. Well Logging Technology, 2018, 42(4): 395-400.
[15] 闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探,2019, 54(2): 447-455. Yan Xingyu, Gu Hanming, Xiao Yifei, et al. XGBoost Algorithm Applied in the Interpretation of Tight-Sand Gas Reservoir on Well Logging Data[J]. Oil Geophysical Prospecting, 2019, 54(2): 447-455.
[16] 李大中,王超,李颖宇. 基于XGBoost算法的风机叶片结冰状态评测[J]. 电力科学与工程,2019, 35(9): 43-48. Li Dazhong, Wang Chao, Li Yingyu. Evaluation of Fan Blade Icing Based on XGBoost Algorithm[J]. Electric Power Science and Engineering, 2019, 35(9): 43-48.
[17] 蒋晋文,刘伟光. XGBoost算法在制造业质量预测中的应用[J]. 智能计算机与应用,2017, 7(6):58-60. Jiang Jinwen, Liu Weiguang. Application of XGBoost Algorithm in Manufacturing Quality Prediction[J]. Intelligent Computer and Applications, 2017, 7(6): 58-60.
[18] 仲鸿儒,成育红,林孟雄,等. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别[J]. 岩性油气藏,2019, 31(5): 84-91. Zhong Hongru, Cheng Yuhong, Lin Mengxiong, et al. Lithology Identification of Complex Carbonate Based on SOM and Fuzzy Recognition[J]. Lithologic Reservoirs, 2019, 31(5):84-91.
[19] 钟仪华,李榕. 基于主成分分析的最小二乘支持向量机岩性识别方法[J]. 测井技术,2009, 33(5): 425-429. Zhong Yihua, Li Rong. Application of Principal Component Analysis and Least Square Support Vector Machine to Lithology Identification[J]. Well Logging Technology, 2009, 33(5): 425-429.
[20] 单敬福,陈欣欣,赵忠军,等. 利用BP神经网络法对致密砂岩气藏储集层复杂岩性的识别[J]. 地球物理学进展,2015, 30(3): 1257-1263. Shan Jingfu, Chen Xinxin, Zhao Zhongjun,et al. Identification of Complex Lithology for Tight Sandstone Gas Reservoirs Based on BP Neural Net[J]. Progress in Geophysics, 2015, 30(3): 1257-1263.
[1] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
[2] 叶涛, 王清斌, 黄志, 孙哲, 李飞, 陈安清. 碳酸盐岩层序地层格架对岩溶储层的控制作用——以渤海西南海域下古生界为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 991-1005.
[3] 张亚蒲, 杨正明, 黄延章, 李海波, 侯海涛, 朱光亚. 低渗孔隙型碳酸盐岩油藏储层特征及剩余油分布规律[J]. 吉林大学学报(地球科学版), 2021, 51(3): 659-668.
[4] 牟丹, 张丽春, 徐长玲. 3种经典机器学习算法在火山岩测井岩性识别中的对比[J]. 吉林大学学报(地球科学版), 2021, 51(3): 951-956.
[5] 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693.
[6] 王磊, 沈金松, 邹榕, 蔺学敏, 徐忠祥, 苏朝阳, 杨萍. 融合地震属性和成像测井信息优化的储层缝洞带评价与钻井轨迹[J]. 吉林大学学报(地球科学版), 2021, 51(2): 607-623.
[7] 王建功, 张道伟, 石亚军, 张平, 孙秀建, 王爱萍, 王玉林, 高妍芳, 张世铭, 易定红. 柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征[J]. 吉林大学学报(地球科学版), 2020, 50(2): 442-453.
[8] 李博南, 曲寿利, 沈珲. 基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J]. 吉林大学学报(地球科学版), 2020, 50(1): 285-293.
[9] 王昱翔, 顾忆, 傅强, 王斌, 万旸璐, 李映涛. 顺北地区中下奥陶统埋深碳酸盐岩储集体特征及成因[J]. 吉林大学学报(地球科学版), 2019, 49(4): 932-946.
[10] 王璐, 杨胜来, 彭先, 刘义成, 徐伟, 邓惠. 缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯-磨溪地区灯四段为例[J]. 吉林大学学报(地球科学版), 2019, 49(4): 947-958.
[11] 鄢伟, 张光学, 樊太亮, 夏斌, 高志前, 张莉, 杨振, 强坤生. 塔里木盆地塔中—顺托果勒地区奥陶系良里塔格组碳酸盐岩颗粒滩沉积特征[J]. 吉林大学学报(地球科学版), 2019, 49(3): 621-636.
[12] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 611-620.
[13] 吴和源, 赵宗举, 汪建国, 王培玺, 龚发雄, 肖飞. 华北克拉通北缘寒武系层序地层划分[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1609-1624.
[14] 范卓颖, 林承焰, 鞠传学, 韩长城, 熊陈微. 塔河油田二区奥陶系优势储集体特征及控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(1): 34-47.
[15] 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .