吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 957-972.doi: 10.13278/j.cnki.jjuese.20200203

• 地质与资源 •    下一篇

银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境

李天军1,2, 黄志龙1, 王瑞1, 苟红光3, 张品3, 殷越4   

  1. 1. 中国石油大学(北京)地球科学学院, 北京 102249;
    2. 中国石油西南油气田分公司勘探开发研究院, 成都 610500;
    3. 中国石油吐哈油田分公司勘探开发研究院, 新疆 哈密 839009;
    4. 中国石化西南油气分公司勘探开发研究院, 成都 610041
  • 收稿日期:2020-09-14 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 黄志龙(1962-),男,教授,博士,主要从事油气藏形成与分布方面的研究,E-mail:huang5288@163.com E-mail:huang5288@163.com
  • 作者简介:李天军(1993-),男,博士研究生,主要从事石油地质方面的研究,E-mail:litianjun2020@163.com
  • 基金资助:
    国家自然科学基金项目(41472111)

Geochemical Characteristics and Formation Environment of Effective Hydrocarbon Source Rock of the Lower Cretaceous Bayingebi Formation in Tiancao Sag, Yingen-Ejinaqi Basin

Li Tianjun1,2, Huang Zhilong1, Wang Rui1, Gou Hongguang3, Zhang Pin3, Yin Yue4   

  1. 1. College of Geosciences, China University of Petroleum (Beijing), 102249, China;
    2. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    3. Exploration and Development Research Institute, PetroChina Tuha Oilfield Company, Hami 839009, Xinjiang, China;
    4. Exploration and Development Research Institute, Sinopec Southwest Oil and Gas Branch, Chengdu 610041, China
  • Received:2020-09-14 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41472111)

摘要: 对于低勘探程度的小型断陷湖盆,寻找有效烃源岩对于勘探方向的选择具有非常重要的意义。本文基于天草凹陷新钻井的大量分析测试资料,对主要勘探层系下白垩统巴音戈壁组的纵横向烃源岩地球化学特征及形成环境进行了系统分析,并阐述了沉积环境变化对有效烃源岩发育的控制作用。研究结果表明:巴音戈壁组烃源岩有机质丰度达到了中等—好的级别,以巴音戈壁组二段有机质丰度最高(w(TOC)平均为1.1%);有机质类型为Ⅱ1-Ⅱ2型,且巴音戈壁组二段的Ⅱ1型有机质丰度最高,属于腐殖腐泥型;烃源岩热演化程度整体达到了低熟-成熟阶段,巴音戈壁组二段为成熟的烃源岩,具备较高的生烃能力;巴音戈壁组有效烃源岩下限为w(TOC)=1.0%,有机质来自高等植物和水生生物的混合源,且低等水生生物贡献比例稍大;巴音戈壁组沉积期为高盐度和还原的沉积环境,盆内藻类勃发和盆外适当的陆源有机质输入是湖盆水体较高古生产力和较好有机质类型的必要条件,持续稳定的缺氧环境为有机质的保存提供了良好条件,这是巴音戈壁组有效烃源岩形成的两个关键条件。天草凹陷南次洼比北次洼更适合有效烃源岩的发育,且发育的有效烃源岩具有更高的有机质丰度和成熟度,是下一步油气勘探的有利区域。

关键词: 银根-额济纳旗盆地, 天草凹陷, 巴音戈壁组, 有效烃源岩, 地球化学特征, 沉积环境

Abstract: For small-scaled rift lake basins with a low exploration degree, it is of great significance to search for effective source rocks for the exploration purpose. Based on a large number of analysis test data of new drillingwells in Tiancao sag,the authorsstudiedthe geochemical characteristics and sedimentary environment of the hydrocarbon source rocks in the vertical and horizontal directions of the Lower Cretaceous Bayingebi Formation, and described the effect of sedimentary environment changes on the development of effective source rocks.The results reveal that the organic matter abundance of the source rocks of the Bayingebi Formation reachesa medium to good level, and the second member of the Bayingebi Formation has the highest organic matter abundance(average w(TOC)=1.1%). The organic matter is of type Ⅱ1-Ⅱ2, and the proportion of type Ⅱ1in the second member of the Bayingebi Formation is higher, belonging to humic-sapropelic.The thermal evolution degree of the source rocks isat low-mature to mature stage. The second member of the Bayingebi Formation belongs to mature source rocks with high potential of hydrocarbon generation.The lower limit of the effective source rock of the Bayingebi Formation is defined as w(TOC)=1.0%, the organic matter wasderived from a mixed source of higher plants and aquatic organisms, and the contribution proportion of lower aquatic organisms is slightly higher. The Bayingebi Formation was deposited in areducingenvironment with high salinity.The algal bloom within the basin and the appropriate terrestrial organic matter input outside the basin are necessary conditions for the increase of water paleo-productivity in the lacustrine basin, and the continuous and stable anoxic environment provides good conditions for the preservation of organic matter. These are the two key conditions to form effective source rocks.The southern sub-sag is more suitable for the development of the effective source rocks than the northern sub-sag in Tiancao sag, and the effective source rocks have higher organic matter abundance and maturity. So the southern sub-sag is the favorable area for oil and gas exploration.

Key words: Yingen-Ejinaqi basin, Tiancao sag, Bayingebi Formation, effective source rocks, geochemical characteristics, sedimentary environment

中图分类号: 

  • TE112.1
[1] 吴茂炳, 王新民. 银根-额济纳旗盆地油气地质特征及油气勘探方向[J]. 中国石油勘探, 2003, 8(4):45-49. Wu Maobing, Wang Xinmin. Petroleum Geological Characteristics and Prospecting Directions for Oil and Gas in Yingen-Ejinaqi Basin[J]. China Petroleum Exploration, 2003, 8(4):45-49.
[2] 魏仙样, 卢进才, 魏建设. 内蒙古银额盆地西部路井凹陷油气地球化学特征与油气源[J]. 地质通报, 2013, 32(10):1665-1672. Wei Xianxiang, Lu Jincai, Wei Jianshe. Petroleum Geochemistry and Oil and Gas Sources of the Lujing Depression in Western Yin'e Basin, Inner Mongolia[J]. Geological Bulletin of China, 2013, 32(10):1665-1672.
[3] 陈治军, 马芳侠, 肖刚, 等. 银额盆地哈日凹陷巴音戈壁组精细油源对比[J]. 石油与天然气地质, 2019, 40(4):900-916. Chen Zhijun, Ma Fangxia, Xiao Gang, et al. Oil-Sources Rock Correlation of Bayingebi Formation in Hari Sag, Yingen-Ejinaqi Basin[J]. Oil & Gas Geology, 2019, 40(4):900-916.
[4] 侯云超, 樊太亮, 王宏语, 等. 银额盆地拐子湖凹陷深层优质储层特征及形成机理[J]. 沉积学报, 2019, 37(4):758-767. Hou Yunchao, Fan Tailiang, Wang Hongyu, et al. Characteristics and Formation Mechanism of High-Quality Reservoir in the Deep Strata of Guaizihu Depression, Yin-E Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4):758-767.
[5] 李相博, 袁剑英, 林卫东, 等. 国内外中、小型盆地油气富集规律及勘探经验[J]. 新疆石油地质, 2001, 22(2):163-166. Li Xiangbo, Yuan Jianying, Lin Weidong, et al. On Hydrocarbons Enrichment Regularity and Exploration Experiences for Medium-Small Basins at Home and Abroad[J]. Xinjiang Petroleum Geology, 2001, 22(2):163-166.
[6] 郝银全, 林卫东, 董伟宏, 等. 银额盆地与二连盆地成藏条件对比及有利勘探区带[J]. 新疆石油地质, 2006, 27(6):664-666. Hao Yinquan, Lin Weidong, Dong Weihong, et al. Correlation of Hydrocarbon Accumulation Conditions in Yin'e Basin and Erlian Basin and Selection of Favorable Prospecting Zones[J]. Xinjiang Petroleum Geology, 2006, 27(6):664-666.
[7] 丁修建, 柳广弟, 黄志龙, 等. 二连盆地赛汉塔拉凹陷烃源岩的分布及形成[J]. 中南大学学报(自然科学版), 2015, 46(5):1739-1746. Ding Xiujian, Liu Guangdi, Huang Zhilong, et al. Source Rock Distribution and Formation in Saihantala Depression, Erlian Basin[J]. Journal of Central South University (Science and Technology), 2015, 46(5):1739-1746.
[8] 丁修建, 柳广弟, 赵龙梅, 等. 小型断陷湖盆有机质富集和烃源岩形成机制:以二连盆地下白垩统腾格尔组一段为例[J]. 新疆石油地质, 2017, 38(6):650-657. Ding Xiujian, Liu Guangdi, Zhao Longmei, et al. Organic Matter Enrichment and Hydrocarbon Source Rock Forming Mechanism in Small-Scale Faulted Lacustrine Basins:A Case from the First Member of Lower Cretaceous Tenger Formation in Erlian Basin[J]. Xinjiang Petroleum Geology, 2017, 38(6):650-657.
[9] Li Tianjun, Huang Zhilong, Yin Yue, et al. Sedimentology and Geochemistry of Cretaceous Source Rocks from the Tiancao Sag, Yin'e Basin, North China:Implications for the Enrichment Mechanism of Organic Matters in Small Lacustrine Rift Basins[J]. Journal of Asian Earth Sciences, 2020, 204:104575.
[10] 王朋, 柳广弟, 曹喆, 等. 查干凹陷下白垩统有效烃源岩识别及其控藏作用[J]. 岩性油气藏, 2015, 27(2):18-25. Wang Peng, Liu Guangdi, Cao Zhe, et al. Identification of Effective Source Rocks of Lower Cretaceous and Its Controlling on Hydrocarbon Accumulation in Chagan Depression[J]. Lithologic Reservoirs, 2015, 27(2):18-25.
[11] 陈景跃. 查干凹陷烃源岩地球化学及有机质富集机制研究[D]. 大庆:东北石油大学, 2012. Chen Jingyue. Research on Source Rock Geochemistry and Mechanism of Abundance of Organic Matter in Changan Depression[D]. Daqing:Northeast Petroleum University, 2012.
[12] 卫平生. 银根-额济纳旗盆地油气地质特征及勘探前景[M]. 北京:石油工业出版社, 2006. Wei Pingsheng. Oil and Gas Geological Characteristics and Exploration Prospect in the Yingen-Ejinaqi Basin[M]. Beijing:Petroleum Industry Press, 2006.
[13] 陈治军, 任来义, 贺永红, 等. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5):1352-1364. Chen Zhijun, Ren Laiyi, He Yonghong, et al. Geochemical Characteristics and Formation Environment of High-Quality Hydrocarbon Source Rocks of Yingen Formation in Hari Sag, Yingen-Ejinaqi Basin[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5):1352-1364.
[14] 林卫东, 周永章, 郝银全, 等. 天草凹陷下白垩统烃源岩的地球化学特征与凹陷含油气远景分析[J]. 矿物岩石地球化学通报, 2005, 24(3):207-210. Lin Weidong, Zhou Yongzhang, Hao Yinquan, et al. Geochemical Characteristics of Lower Cretaceous Source Rocks of Tiancao Depression, Yingen-Ejinaqi Basin, Northwest China and Its Petroleum Potential Analysis[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(3):207-210.
[15] 唐友军, 文志刚, 张超漠, 等. 银根-额济纳旗盆地天草凹陷天2井烃源岩生烃潜力评价[J]. 天然气地球科学, 2008, 19(4):530-536. Tang Youjun, Wen Zhigang, Zhang Chaomo, et al. Evaluation of Source Rock of Well Tian 2, Tiancao Sag of Yingen-Ejinaqi Basin[J]. Natural Gas Geoscience, 2008, 19(4):530-536.
[16] 李光云, 樊太亮, 唐龙, 等. 银额盆地天草凹陷下白垩统层序地层格架与油气分布[J]. 新疆地质, 2007, 25(3):295-299. Li Guangyun, Fan Tailiang, Tang Long, et al. Sequence Stratigraphy Framework and Oil & Gas Distribution at the Lower Cretaceous in Tiancao Depression in Yin'e Basin[J]. Xinjiang Geology, 2007, 25(3):295-299.
[17] 林卫东, 周永章, 王新民, 等. 银根-额济纳旗盆地天草凹陷构造-沉积体系演化及油气成藏条件分析[J]. 大地构造与成矿学, 2004, 28(4):444-449. Lin Weidong, Zhou Yongzhang, Wang Xinmin, et al. Structural-Depositional System and Factors Affecting the Hydrocarbon Pool Formation in Tiancao Depression, the Yingen-Ejinaqi Basin[J]. Geotectonica et Metallogenia, 2004, 28(4):444-449.
[18] 有机质稳定碳同位素测定同位素质谱法:SY/T 5238-2008[S]. 北京:石油工业出版社, 2008:1-9. Analysis Method for Carbon and Oxygen Isotope in Organic Matter and Carbonate:SY/T 5238-2008[S]. Beijing:Petroleum Industry Press, 2008:1-9.
[19] 沉积岩中总有机碳的测定:GB/T 19145-2003[S]. 北京:中国标准出版社, 2003:1-3. Determination of Total Organic Carbon in Sedimentary Rock:GB/T 19145-2003[S]. Beijing:Standards Press of China, 2003:1-3.
[20] 岩石有机质中碳、氢、氧元素分析方法:GB/T 19143-2003[S]. 北京:中国标准出版社, 2003:1-3. Analytical Method of Element for Carbon, Hydrogen and Oxygen in Rock Organics:GB/T 19143-2003[S]. Beijing:Standards Press of China, 2003:1-3.
[21] 岩石中可溶有机物及原油族组分分析:SY/T 5119-2008[S]. 北京:石油工业出版社, 2008:1-5. Analysis Method for Fractions of Rock Extract and Crude Oil:SY/T 5119-2008[S]. Beijing:Petroleum Industry Press, 2008:1-5.
[22] 沉积岩中镜质体反射率测定方法:SY/T 5124-2012[S]. 北京:石油工业出版社, 2012:1-6. Method of Determining Microscopically the Reflectance of Vitrinite in Sedimentary:SY/T 5124-2012[S]. Beijing:Petroleum Industry Press, 2012:1-6.
[23] 气相色谱质谱法测定沉积物和原油中生物标志物:GB/T 18606-2001[S]. 北京:中国标准出版社, 2001:1-13. The Standard Test Method for Biomarker in Sediment and Crude Oil by GC-MS:GB/T 18606-2001[S]. Beijing:Standards Press of China, 2001:1-13.
[24] 卢双舫,张敏. 油气地球化学[M].北京:石油工业出版社,2010:206-213. Lu Shuangfang, Zhang Min. Oil and Gas Geochemical[M]. Beijing:Petroleum Industry Press, 2010:206-213.
[25] 王奇, 邹华耀, 周心怀, 等.渤海海域烃源岩的生气潜力与天然气成因分析[J]. 高校地质学报, 2017, 23(2):304-314. Wang Qi, Zou Huayao, Zhou Xinhuai, et al. Gas Potential of Source Rocks and Origin of Natural Gases in Bohai Sea[J]. Geological Journal of China Universities, 2017, 23(2):304-314.
[26] 陆相烃源岩地球化学评价方法:SY/T 5735-1995[S]. 北京:石油工业出版社,1995. Evaluation Criteria for Organic Matter of Terrestrial Hydrocarbon Source Rock:SY/T 5735-1995[S]. Beijing:Petroleum Industry Press, 1995.
[27] 杜治利, 田亚, 刘洪军, 等. 鄂尔多斯盆地南部延长组长9段页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2016, 46(2):358-367. Du Zhili, Tian Ya, Liu Hongjun, et al. Shale Gas Resource Potential Evalution of Chang 9 Member, Yanchang Formation in South Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):358-367.
[28] Freeman K H, Hayes J M, Trendel J M, et al. Evidence from Carbon Isotope Measurements for Diverse Origins of Sedimentary Hydrocarbons[J]. Nature, 1990, 343:254-256.
[29] Lewan M D. Stable Carbon Isotopes of Amorphous Kerogens from Phanerozoic Sedimentary Rocks[J]. Geochimica et Cosmochimica Acta, 1986, 50(8):1583-1591.
[30] 邬立言, 顾信章. 热解技术在我国生油岩研究中的应用[J]. 石油学报, 1986, 7(2):13-19. Wu Liyan, Gu Xinzhang. The Application of Pyrolysis Technique in Source Rock Research[J]. Acta Petrolei Sinica, 1986, 7(2):13-19.
[31] 侯读杰, 张林晔. 实用油气地球化学图件[M]. 北京:石油工业出版社, 2003. Hou Dujie, Zhang Linye. Practical Oil and Gas Geochemical Map[M]. Beijing:Petroleum Industry Press, 2003.
[32] Xie X, Borjigin T, Zhang Q, et al. Intact Microbial Fossils in the Permian Lucaogou Formation Oil Shale, Junggar Basin, NW, China[J]. International Journal of Coal Geology, 2015, 146:166-178.
[33] Liu Bo, Bechtel A, Sachsenhofer R F, et al. Depositional Environment of Oil Shale Within the Second Member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China[J]. International Journal of Coal Geology, 2017, 175:10-25.
[34] 曲长胜, 邱隆伟, 操应长, 等. 吉木萨尔凹陷二叠系芦草沟组烃源岩有机岩石学特征及其赋存状态[J].中国石油大学学报(自然科学版), 2017, 41(2):30-38. Qu Changsheng, Qiu Longwei, Cao Yingchang, et al. Organic Petrology Characteristics and Occurrence of Source Rocks in Permian Lucaogou Formation,Jimsar Sag[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(2):30-38.
[35] Stach E, Mackowsky M T H, Teichmuller M, et al. Stach's Textbook of Coal Petrology[M]. Berlin:Gebriuder Borntraeger, 1982.
[36] 张振苓, 邬立言, 舒念祖. 烃源岩热解分析参数Tmax异常的原因[J]. 石油勘探与开发, 2006, 34(1):72-75. Zhang Zhenling, Wu Liyan, Shu Nianzu, et al. Cause Analysis of Abnormal Tmax Values on Rock Eval Pyrolysis[J]. Petroleum Exploration and Development, 2006, 34(1):72-75.
[37] 赵文, 郭小文, 何生. 生物标志化合物成熟度参数有效性:以伊通盆地烃源岩为例[J]. 西安石油大学学报(自然科学版), 2016, 31(6):23-31. Zhao Wen, Guo Xiaowen, He Sheng. Analysis on Validity of Maturity Parameters of Biomarkers:A Case Study from Source Rocks in Yitong Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(6):23-31.
[38] 高岗, 杨尚儒, 陈果, 等. 确定烃源岩有效排烃总有机碳阈值的方法及应用[J]. 石油实验地质, 2017, 39(3):397-408. Gao Gang, Yang Shangru, Chen Guo, et al. Method and Application for Identifying TOC Threshold of Hydrocarbon-Expelling Source Rocks[J]. Petroleum Geology & Experiment, 2017, 39(3):397-408.
[39] 曾文人, 孟庆涛, 刘招君, 等. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5):1270-1284. Zeng Wenren, Meng Qingtao, Liu Zhaojun, et al. Organic Geochemical Characteristics and Paleo-Lake Conditions of Oil Shale of Middle Jurassic Shimengou Formation in Tuanyushan Area of Northern Qaidam Basin[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1270-1284.
[40] Hao Fang, Zhou Xinhuai, Zhu Yangming, et al. Lacustrine Source Rock Deposition in Response to Coevolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42:323-339.
[41] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic Geochemical Indicator of Palaeoenviron-mental Conditions of Sedimentation[J]. Nature, 1978, 272:216-222.
[42] Koopmans M P, Leeuw J W, Sinninghe-Damsté J S. Novel Cyclized and Aromatic Diagenetic Products of β-Carotene in the Green River Shale[J]. Organic Geochemistry, 1997, 26:451-466.
[1] 李玉超, 王诚煜, 于成广. 辽宁丹东地区土壤Se元素地球化学特征及其影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1766-1775.
[2] 海连富, 王磊, 马治军, 徐清海, 宋扬, 白金鹤. 宁夏固原炭山地区中侏罗统延安组油页岩特征及其沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(3): 747-756.
[3] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[4] 王嗣敏, 臧东升, 王熙琼, 李杰, 韩嵩, 李建中. 辽西建昌盆地油页岩发育特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 326-340.
[5] 柳蓉, 闫旭, 刘招君, 张坤, 武昕普, 赵康安. 银额盆地下白垩统巴音戈壁组含油页岩岩系孢粉化石特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 341-355.
[6] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[7] 董清水, 何春生, 楼仁兴, 任锡钢, 张超, 张渝金, 许圣传. 大兴安岭南段阿鲁科尔沁旗地区林西组沉积环境特征及其时限的地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 425-441.
[8] 易海永, 崔宝琛, 王瑶琳, 邱玉超, 徐胜林, 李乾. 四川盆地广安地区中二叠统栖霞组岩石特征与沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 454-464.
[9] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[10] 陈庆松, 杨润柏, 刘德民, 陶兰初. 滇东北会泽灯影组硅质岩成因及沉积环境——来自岩石学和地球化学证据[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1327-1337.
[11] 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014.
[12] 曾忠诚, 边小卫, 张若愚, 孔文年, 陈宁, 赵端昌, 赵江林. 西昆仑塔什库尔干下-中侏罗统龙山组沉积构造背景分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1039-1052.
[13] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[14] 高小惠, 张训华, 蔡来星, 郭兴伟, 李文强. 南黄海盆地中部隆起CSDP-2井志留系-石炭系岩石学特征及其沉积相[J]. 吉林大学学报(地球科学版), 2019, 49(1): 53-64.
[15] 史冀忠, 卢进才, 魏建设, 牛亚卓, 韩小锋, 张宇轩. 内蒙古阿拉善右旗雅干地区二叠系埋汗哈达组硅质岩成因及其沉积环境[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1711-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037 -1043 .
[2] 束龙仓,李 伟. 北塘水库库底地层渗透系数的随机特性分析[J]. J4, 2007, 37(2): 216 -0220 .
[3] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266 -270 .
[4] 苏小四,林学钰,董维红,万玉玉. 反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J]. J4, 2007, 37(2): 271 -277 .
[5] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215 -0220 .
[6] 杨俊鹏,胡 克,刘玉英. 吉林西部盐碱化土壤碳酸盐的碳稳定同位素特征[J]. J4, 2006, 36(02): 245 -0249 .
[7] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[8] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516 -520 .
[9] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[10] 杨春梅, 李洪奇,陆大卫,张方礼,高 原,邵英超. 不同驱替方式下岩石电阻率与饱和度的关系[J]. J4, 2005, 35(05): 667 -671 .