吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1256-1267.doi: 10.13278/j.cnki.jjuese.20200127

• 地球探测与信息技术 • 上一篇    下一篇

东营凹陷红层地球物理特征分析及有利储层预测

张军华, 刘震, 李琴, 任雄风, 赵杰   

  1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580
  • 收稿日期:2020-05-21 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:张军华(1965-),男,教授,博士生导师,主要从事储层精细描述与预测工作,E-mail:zjh_upc@163.com
  • 基金资助:
    国家科技重大专项(2017ZX05072-001,2017ZX05009-001);中国石油化工集团公司项目(P18051-4);中国石油大学(华东)研究生创新工程(YCX2021014);国家留学基金(202106450009)

Analysis of Geophysical Characteristics and Favorable Reservoir Prediction of Red Beds in Dongying Sag

Zhang Junhua, Liu Zhen, Li Qin, Ren Xiongfeng, Zhao Jie   

  1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2020-05-21 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Science and Technology Major Project (2017ZX05072-001, 2017ZX05009-001), the Project of Sinopec (P18051-4), the Graduate Innovation Project of China University of Petroleum (YCX2021014) and the Fund of China Scholarship Council (202106450009)

摘要: 东营凹陷深部储层是干燥沉积环境下的一套红层,其中的孔一中储层厚度大、钻遇井少,具有较大勘探潜力。但目标区地层结构复杂,埋深从南到北逐渐变大,井震关系一致性不好,储层预测有很大难度。通过综合分析井震特征、优选地震属性、建立井震厚度关系,使用单一最佳属性法、多元线性回归法、基于学习型的非线性储层预测法,得出以下认识与结论:1)研究区红层具有薄互层典型特征,频率较上覆和下伏地层高,地震反射具有中振、低连、低信噪比特征;2)新研发的基于优势频率的流度因子具有最好的厚度相关性,最大振幅、均方根振幅、过零点数、能量半时也较好;3)无论是多元线性回归还是非线性支持向量机,优化的五属性储层预测效果要好于七属性;4)基于交叉验证的支持向量机方法十分适合深部储层小样本储层厚度预测,效果好于单一最佳属性法和多元线性回归法。

关键词: 东营凹陷, 红层, 井震关系, 流度因子, 多元线性回归, 交叉验证SVM, 储层预测

Abstract: The deep reservoir of Dongying sag is a set of red beds under dry sedimentary environment. The reservoir of Ek1z has a great exploration potential with large thickness and less drilling. However, the reservoir prediction is very difficult,as the layer structure in the target area is complex, the burial depth becomes deeper from south to north gradually, and the consistency of well-to-seismic relationship is not good. Through a comprehensive analysis of well-to-seismic characteristics, the seismic attributes were optimized and the relationship of well-to-seismic thickness was established. Using the single best attribute method, multiple linear regression method, and learning-type nonlinear reservoir prediction method, the understandings and conclusions are drawn as follows:1) The red bed in the study area has the typical characteristics of thin inter-beds, with higher frequency than the overlying and underlying strata, medium amplitude seismic reflection, low continuity, and low signal-to-noise ratio; 2) Based on the dominant frequency, the newly developed mobility attribute has the best thickness correlation and the maximum amplitude, the root mean square amplitude, zero crossing count,and the energy half-time attribute is also better; 3) Whether it is linear regression or nonlinear support vector machine (SVM) method, the optimized five attributes reservoir prediction effect is better than that of seven attributes; 4) The cross-validation based SVM method is the most suitable one for the thickness prediction of small sample wells in deep reservoirs, and its effect is better than the single best attribute method and the multiple regression method.

Key words: Dongying sag, red beds, well-to-seismic relationship, mobility, multiple linear regression, cross validation SVM, reservoir prediction

中图分类号: 

  • P631.4
[1] 王健,操应长,高永进,等. 东营凹陷古近系红层储层成岩作用特征及形成机制[J]. 石油学报, 2013, 34(2):283-292. Wang Jian, Cao Yingchang, Gao Yongjin, et al. Diagenetic Characteristics and Formation Mechanism of Paleogene Red-Bed Reservoirs in Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(2):283-292.
[2] 李继岩. 渤海湾盆地东营凹陷东段红层储层成岩环境时空演化及成岩孔隙演化[J].石油与天然气地质,2017,38(1):90-97. Li Jiyan. Temporal-Spatial Evolution of Diagenetic Environment and Diagenesis Pore Evolutionary Process of Red Beds in the Eastern Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2017, 38(1):90-97.
[3] 董大伟,李继岩,王晓蕾,等.渤海湾盆地东营凹陷东部孔店组红层储层特征及控制因素[J].中国石油大学学报(自然科学版), 2017, 41(5):20-29. Dong Dawei, Li Jiyan, Wang Xiaolei, et al. Reservoir Characteristics and Controlling Factors of Red Bed of Kongdian Formation in Eastern Dongying Depression, Bohai Bay Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(5):20-29.
[4] 王健,操应长,高永进,等. 东营凹陷古近系红层砂体有效储层的物性下限及控制因素[J]. 中国石油大学学报(自然科学版),2011,35(4):27-33. Wang Jian, Cao Yingchang, Gao Yongjin, et al. Petrophysical Parameter Cutoff and Controlling Factors of Effective Reservoir of Red Beds Sandbodies of Paleogene in Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(4):27-33.
[5] 杨勇强,邱隆伟,孙宝强. 陆相"红层"等时地层对比新方法在东营凹陷南斜坡的应用[J]. 中国石油大学学报(自然科学版),2012,36(2):16-21. Yang Yongqiang, Qiu Longwei, Sun Baoqiang. Application of New Method of Time-Stratigraphic Comparison of Terrestrial Red Beds in Southern Slope of Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2):16-21.
[6] 刘传虎,韩宏伟. 济阳坳陷古近系红层沉积成藏主控因素与勘探潜力[J]. 石油学报,2012,33(增刊1):63-70. Liu Chuanhu, Han Hongwei. Main Controlling Factors of Deposition, Hydrocarbon Accumulation and Exploration Potential of Paleogene Red Beds in Jiyang Depression[J]. Acta Petrolei Sinica, 2012, 33(Sup.1):63-70.
[7] 李继岩,贾光华,王晓蕾,等. 地球物理相在东营凹陷始新统红层沉积相研究中的应用[J]. 测井技术,2016, 40(2):220-228. Li Jiyan, Jia Guanghua, Wang Xiaolei, et al. Application of Geophysical Facies to Sedimentary Facies Study in the Eocene Red-Beds, Dongying Sag[J]. Well Loging Technology, 2016, 40(2):220-228.
[8] 刘书会,唐东,陈敬义.东营凹陷南坡西段红层地球物理特征及储层预测[J].油气地质与采收率,2012,19(3):53-56. Liu Shuhui, Tang Dong, Chen Jingyi. The Geophysical Characteristics and Reservoir Prediction of the Red Layer in the Western Section of the South Slope of Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(3):53-56.
[9] 潘兴祥. 东营凹陷南坡西段"红层"储层地震描述方法[J]. 石油地球物理勘探,2013,48(增刊1):82-88. Pan Xingxiang. The Method of Describing the Earthquake of the "Red Layer" Reservoir in the Western Section of the South Slope of the Dongying Depression[J]. Oil Geophysical Prospecting, 2013, 48(Sup.1):82-88.
[10] 才巨宏. 红层岩石物理特征与储层预测技术研究:以东营凹陷纯化地区为例[J]. 工程地球物理学报,2012,9(3):306-310. Cai Juhong. A Study of Redbed Rock Physical Features and Reservoir Forecasting Techniques[J]. Chinese Journal of Engineering Geophysics, 2012, 9(3):306-310.
[11] 王永刚,张军华,乐友喜. 地震属性分析技术[M]. 东营:中国石油大学出版社,2007. Wang Yonggang, Zhang Junhua, Yue Youxi. Seismic Attributes Analysis Techniques[M]. Dongying:China University of Petroleum Press, 2007.
[12] 张军华,王庆峰,张晓辉,等. 薄层和薄互层叠后地震解释关键技术综述[J]. 石油物探,2017,56(4):459-471. Zhang Junhua, Wang Qingfeng, Zhang Xiaohui, et a1. Poststack Interpretation Key Techniques for Thin Layer and Thin Interbed Reservoirs[J]. Geophysical Prospecting for Petroleum, 2017, 56(4):459-471.
[13] 张军华,桂志鹏,刘显太,等. 过零点个数地震属性理论诠释及应用[J]. 地球物理学进展,2020,35(1):258-264. Zhang Junhua, Gui Zhipeng, Liu Xiantai, et al. Theory Annotation and Application for the Zero Crossing Count Attribute[J]. Progress in Geophysics, 2020,35(1):258-264.
[14] Silin D, Goloshubin G. An Asymptotic Model of Seismic Reflection from a Permeable Layer[J]. Transport in Porous Media, 2010, 83(1):233-256.
[15] 代双和,陈志刚,于京波,等. 流体活动性属性技术在KG油田储集层描述中的应用[J]. 石油勘探与开发, 2010,37(5):573-578. Dai Shuanghe, Chen Zhigang, Yu Jingbo, et al. Application of the Fluid Mobility Attribute Technique in the Reservoir Characterization of KG Oilfield, Algeri[J]. Petroleum Exploration and Development, 2010, 37(5):573-578.
[16] 蔡涵鹏. 基于地震资料低频信息的储层流体识别[D]. 成都:成都理工大学, 2012. Cai Hanpeng. Reservoir Fluid Identification from Low-Frequency Seismic Wave[D]. Chengdu:Chengdu University of Technology, 2012.
[17] 陈学华,贺振华,朱四新,等. 地震低频信息计算储层流体流度的方法及其应用[J]. 应用地球物理, 2012,9(3):326-332. Chen Xuehua, He Zhenhua, Zhu Sixin, et al. Seismic Low Frequency Based Calculation of Reservoir Fluid Mobility and Its Applications[J]. Applied Geophysics, 2012, 9(3):326-332.
[18] 于正军,董冬冬,宋维琪,等. 相带控制下协克里金方法孔隙度预测[J] 地球物理学进展, 2012, 27(4):1581-1587. Yu Zhengjun, Dong Dongdong, Song Weiqi, et a1. Porosity Prediction with Co-Kriging Method Controlled by Sedimentary Facies[J]. Progress in Geophysics, 2012, 27(4):1581-1587.
[19] 乐友喜,王永刚. 非参数回归法在孔隙度参数预测中的应用[J]. 地质科学,2002,37(1):118-126. Yue Youxi, Wang Yonggang. Nonparametric Regression Applied in Porosity Parameter Prediction[J]. Chinese Journal of Geology, 2002, 37(1):118-126.
[20] 宋建国,杨璐,高强山,等. 强容噪性随机森林算法在地震储层预测中的应用[J].石油地球物理勘探, 2018,53(5):954-960. Song Jianguo, Yang Lu, Gao Qiangshan, et al. Application of Random Forest Algorithm with Strong Tolerant Noise in Seismic Reservoir Prediction[J]. Oil Geophysical Prospecting, 2018, 53(5):954-960.
[21] 杨柳青,陈伟,查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展,2019, 34(4):1548-1555. Yang Liuqing, Chen Wei, Zha Bei. Prediction and Application of Reservoir Porosity by Convolutional Neural Network[J]. Progress in Geophysics, 2019, 34(4):1548-1555.
[22] 倪维军,李琪,郭文惠,等.基于支持向量机的页岩储层横波速度预测[J].西安石油大学学报(自然科学版),2017,32(4):46-49. Ni Weijun, Li Qi, Guo Wenhui, et al. Prediction of Shear Wave Velocity in Shale Reservoir Based on Support Vector Machine[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32(4):46-49.
[23] 张尔华,关晓巍,张元高.支持向量机模型在火山岩储层预测中的应用:以徐家围子断陷徐东斜坡带为例[J].地球物理学报, 2011,54(2):428-432. Zhang Erhua, Guan Xiaowei, Zhang Yuangao. Support Vector Machine Involcanic Reservoir Forecast:East Slope in Xujiaweizi Depression[J]. Chinese Journal of Geophysics, 2011, 54(2):428-432.
[24] Vapnik V N, Golowich S E, Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing[J]. Advances in Neural Information Processing Systems, 1996, 9(9):281-287.
[25] Luo W P, Li H Q, Shi N. Semi-Supervised Least Squares Support Vector Machine Algorithm:Application to Offshore Oil Reservoir[J]. Applied Geophysics, 2016, 13(2):406-415.
[26] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2):611-620. Han Qidi, Zhang Xiaotong, Shen Wei. Application of Support Vector Machine Based on Decision Tree Feature Extraction in Lithology Classification[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):611-620.
[1] 王鑫, 林承焰, 马存飞, 陈柄屹, 杜凯, 李志鹏. 东营凹陷北部陡坡带利563区块沙四上亚段砂砾岩扇体沉积特征及沉积模式[J]. 吉林大学学报(地球科学版), 2020, 50(3): 705-720.
[2] 杨怀宇. 王家岗—八面河地区潜山残留地层发育特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1625-1634.
[3] 贾艳聪, 操应长, 林畅松, 王健. 东营凹陷博兴洼陷沙四上亚段滩坝优质储层形成机理与分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 652-664.
[4] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[5] 朱传华, 王伟锋, 王青振, 李玉坤. 非均质储层三维构造应力场模拟方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1580-1588.
[6] 赵利, 李理, 董大伟. 基于小波变换的盆地沉积-构造波动分析[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1227-1236.
[7] 马奔奔, 操应长, 王艳忠, 刘惠民, 高永进. 东营凹陷盐家地区沙四上亚段砂砾岩储层岩相与物性关系[J]. 吉林大学学报(地球科学版), 2015, 45(2): 495-506.
[8] 王淑萍,徐守余,董春梅,王丽萍,刘春平. 东营凹陷民丰洼陷北带沙四下亚段深层天然气储层成岩作用[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1747-1759.
[9] 嵇艳鞠,冯雪,于明媚,徐江,呼彦朴,关珊珊. 基于多元线性回归的HTEM三维异常体电导率-深度识别[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1687-1694.
[10] 郭佳,曾溅辉,宋国奇,张永旺,王学军,孟伟. 东营凹陷中央隆起带烃类流体活动在成岩作用上的响应[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1123-1133.
[11] 秦雪霏,李巍. 大牛地气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1048-1054.
[12] 孙乃泉,云露,蒲仁海,杨素举. 塔里木盆地顺9井区柯坪塔格组下段沉积微相与储层展布[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1716-1725.
[13] 薛群威,刘艳辉,唐灿. 突发地质灾害气象预警统计模型与应用[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1614-1622.
[14] 王艳忠,操应长,葸克来. 次生孔隙发育带的概念及石油地质意义新认识[J]. 吉林大学学报(地球科学版), 2013, 43(3): 659-668.
[15] 乐友喜,黄健良,张阳,周磊,张玉明,陈孔全. 地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 632-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .