吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1605-1612.doi: 10.13278/j.cnki.jjuese.20200298

• 绿色岩土工程 • 上一篇    

基于钻孔电视的深部岩体节理三维网络模拟

魏翔1, 侯振坤2   

  1. 1. 重庆工商大学废油资源化技术与装备工程研究中心, 重庆 400067;
    2. 广东工业大学土木与交通工程学院, 广州 510006
  • 收稿日期:2020-12-08 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 侯振坤(1988-),男,讲师,博士,主要从事页岩油气开采、桩基承载机理及桩侧注浆机理方面的研究,E-mail:zhenkunhoucqu@163.com E-mail:zhenkunhoucqu@163.com
  • 作者简介:魏翔(1989-),男,讲师,主要从事岩土工程、地质工程理论方面的研究,E-mail:903153423@qq.com
  • 基金资助:
    重庆市科技局自然科学基金面上项目(cstc2020jcyj-msxmX0743,cstc2020jcyj-bsh0142);中国博士后科学基金项目(2019M662918);岩土力学与工程国家重点实验室资助课题-开放基金项目(Z019018)

3D Network Simulation of Deep Rock Joints Based on Borehole TV

Wei Xiang1, Hou Zhenkun2   

  1. 1. Engineering Research Center for Waste Oil Recovery Technology and Equipment, Chongqing Technology and Business University, Chongqing 400067, China;
    2. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-12-08 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Support by the General Project of Natural Science Foundation of Chongqing Science and Technology Bureau (cstc2020jcyj-msxmX0743, cstc2020jcyj-bsh0142), the Projiect of China Postdoctoral Science Foundation (2019M662918) and the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering (Z019018)

摘要: 为了准确模拟岩体节理的空间分布,评价高放废物地质处置库围岩的稳定性,先通过调查露头节理数据,运用概率统计理论进行节理几何特征模拟,再利用Monte-Carlo法来模拟节理空间分布特征,并以高放废物地质处置新疆预选区天湖地段花岗岩体为研究对象,通过钻孔电视调查不同深度节理几何特征,划分钻孔岩体结构均质区,提出钻孔节理产状、大小、密度的统计方法和计算公式,以均质区建立节理三维网络模型并通过数据对比法进行模型验证。结果表明:1)利用列联表卡方检验和重叠窗口法可将天湖钻孔岩体划分为0~90、120~240、270~360和390~600 m等4个均质区;2)利用SPSS软件以及基于节理直径、迹长和隙宽之间的数量关系得出节理产状服从正态分布,节理直径服从负指数分布;3)通过数据对比法得出模型统计和现场测量的节理平均产状数据相差±3°以内,平均直径相差±1 m以内,平均面密度相差±0.01 m-2以内,从而验证了Monte-Carlo法建立的节理三维网络模拟的准确性。

关键词: 岩体, 节理几何特征, 三维网络模拟, 钻孔电视

Abstract: In order to accurately simulate the spatial distribution of rock joints to evaluate the stability of surrounding rock in high level radioactive waste geological disposal repository, at first the probability statistics theory was introduced to simulate the geometric characteristics of joints through the investigation of outcrop joint data, then by using the Monte-Carlo method the spatial distribution characteristics of the joints of the granite rocks in the Tianhu district in Xinjiang were simulated, which is a preliminary area for the disposal of high-level radioactive waste. The authors studied the different depth of joint geometrical characteristics through borehole TV, circled the homogeneous areas, proposed statistical methods and calculation formulas for borehole joint occurrence, density, and size, and finally established a joint 3D network model. The results show that:1) Using the chi-square test of the list table and the overlapping window method, the rock mass of the Tianhu borehole is divided into 0-90,120-240,270-360, and 390-600 m homogeneous zones; 2) Using SPSS software and based on the quantitative relationship between joint diameter, joint trace length, and gap width, the joint occurrence and diameter were in normal and negative exponential distribution respectively; 3) The difference between the model statistics and the field measured joint occurrence is within ±3°, the average diameter is within ±1 m, and the surface density is within ±0.01 m-2 through data comparison, which verifies the accuracy of the 3D network simulation of the joint established by the Monte-Carlo method.

Key words: rock mass, geometric characteristics of joint, 3D network simulation, borehole TV

中图分类号: 

  • TU45
[1] Wang G B, Wei X, Huo L, et al. Rock Mass Characteristic of Suanjingzi Section in the Beishan Preselected Site of China's High-Level Radioactive Waste Disposal[J]. Arabian Journal of Geoences, 2019, 12(24):1099-1110.
[2] Ivanova V M, Sousa R, Murrihy B, et al. Mathematical Algorithm Development and Parametric Studies with the Geofrac Three-Dimensional Stochastic Model of Natural Rock Fracture Systems[J]. Computers & Geosciences, 2014, 67:100-109.
[3] Arnold K J. On Spherical Probability Distributi- on[D]. Cambridge:Thesis Massachusetts Institute of Technology, 1941:42.
[4] Bingham C. Distributions on the Sphere and on the Projective Plane[D]. New Haven:Yale University, 1964:93.
[5] Kulatilake P H S W. Bivariate Normal Distribution Fitting on Discontinuity Orientation Clusters[J]. Mathematical Geology, 1986, 18:2.
[6] Priest S D, Hudson J A. Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, 1981, 18(3):183-197.
[7] Paul P H. Estimating the Mean Length of Discontinuity Trace[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(3):221-228.
[8] Zhang L, Einstein H H. Estimating the Mean Trace Length of Rock Discontinuities[J]. Rock Mechanics and Rock Engineering, 1998, 31(4):217-235.
[9] Mauldon M. Estimating Mean Fracture Trace Length and Density from Observations in Convex Windows[J]. Rock Mechanics and Rock Engineering, 1998, 31(4):201-216
[10] 杨春和, 包宏涛, 王贵宾, 等.岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报, 2006, 25(12):2475-2480. Yang Chunhe, Bao Hongtao, Wang Guibin, et al. Estimation of Average Trace Length and Midpoint Surface Density of Rock Joints[J]. Journal of Rock Mechanics and Engineering, 2006, 25(12):2475-2480.
[11] Wei X, Guo Y, Cheng H, et al. Rock Mass Characteristics in Beishan, a Preselected Area for China's High-Level Radioactive Waste Disposal[J]. Acta Geologica Sinica, 2019, 93(2):116-126.
[12] Wei X, Guo Y, Cheng H L, et al. Estimation of Fracture Geometry Parameters and Characterization of Rock Mass Structure for the Beishan Area, China[J]. Acta Geologica Sinica, 2020, 94(5):1381-1392.
[13] 刘子侠, 陈剑平, 王凤艳, 等. 基于活动控制的岩体结构面几何信息快速获取[J]. 吉林大学学报(地球科学版), 2019, 49(4):1192-1199. Liu Zixia, Chen Jianping, Wang Fengyan, et al. Rapid Acquisition of Geometrical Information of Rock Mass Discontinuities Based on Portable Controller Frame[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4):1192-1199.
[14] 王明常, 徐则双, 王凤艳, 等. 基于摄影测量获取岩体结构面参数的概率分布拟合检验[J]. 吉林大学学报(地球科学版), 2018, 48(6):1898-1906. Wang Mingchang, Xu Zeshuang, Wang Fengyan, et al.The Fitting Test of Probability Distribution of Rock Mass Discontinuity Parameters Obtained Based on Photogrammetry[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6):1898-1906.
[15] 魏翔, 杨春和. 钻孔岩体裂隙几何参数确定方法及其应用[J]. 岩石力学与工程学报, 2015, 34(9):1758-1766. Wei Xiang, Yang Chunhe. Method for Determining Geometrical Parameters of Rock Fractures in Boreholes and Its Application[J]. Journal of Rock Mechanics and Engineering, 2015, 34(9):1758-1766.
[16] 田开铭, 万力.各向异性裂隙介质渗透性的研究与评价[M]. 北京:学苑出版社, 1989:32. Tian Kaiming, Wan Li. Research and Evaluation of Anisotropic Permeability Fractured Medium[M]. Beijing:Academy Press, 1989:32.
[17] 汪进超, 王川婴, 唐新建, 等.基于钻孔摄像技术的岩体节理大小估算方法[J]. 岩土力学, 2017, 38(9):2701-2707. Wang Jinchao, Wang Chuanying, Tang Xinjian, et al. Rock Joint Size Estimation Method Based on Borehole Camera Technology[J]. Rock and Soil Mechanics, 2017, 38(9):2701-2707.
[18] 吴月秀, 刘泉声, 李金兰, 等.节理迹长与隙宽的相关性对裂隙岩体水力学特性的影响[J]. 岩石力学与工程学报, 2014, 33(增刊2):3555-3562. Wu Yuexiu, Liu Quansheng, Li Jinlan, et al. Influence of the Correlation Between Joint Trace Length and Crack Width on Hydraulic Properties of Fractured Rock Mass[J]. Journal of Rock Mechanics and Engineering, 2014, 33(Sup. 2):3555-3562.
[19] 徐光黎. 节理张开度水力学分析[J]. 勘察科学技术, 1993(2):3-6. Xu Guangli. Hydraulic Analysis of the Joint Aperture[J]. Site Investigation Science and Technology, 1993(2):3-6.
[20] Terzaghi R D. Sources of Error in Joint Surveys[J]. Geotechnique, 1965, 15:287-304.
[21] 张有天.裂隙岩体渗流数学模型研究现况[J]. 人民长江, 1991(3):1-10. Zhang Youtian. Research Status of Mathematical Model of Seepage in Fractured Rock Mass[J]. Yangtze River, 1991(3):1-10.
[1] 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782.
[2] 覃小锋, 张诚, 王宗起, 马收先, 宫江华, 冯毅, 崔安民, 李东. 桂北宝坛锡多金属成矿区平英岩体晚期侵入岩的年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 380-399.
[3] 梁涛, 卢仁. 豫南伏牛山余脉铜山岩体锆石U-Pb定年、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 400-415.
[4] 李守奎, 张世涛, 赵庆红, 黎明. 滇西兰坪皂角场新生代富碱斑岩体锆石U-Pb年代学及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 169-184.
[5] 明添学, 杨清标, 李蓉, 唐忠, 薛戈, 罗建宏, 余海军, 李永平. 滇西加里东期平河复式花岗岩体锆石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1685-1702.
[6] 蔡永丰, 刘风雷, 冯佐海, 周云, 曾长育. 桂东北姑婆山岩体矿物学和年代学特征及其成岩成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(3): 842-856.
[7] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[8] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[9] 樊文鑫, 李光明, 焦彦杰, 梁生贤. 重磁场特征对西藏扎西康矿集区构造格架与成矿的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1741-1754.
[10] 李洪英, 杨磊, 陈剑锋. 湖南桃江县木瓜园钨矿床地质特征及含矿岩体成岩时代[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1285-1300.
[11] 王梓龙, 裴向军, 张御阳, 张硕, 魏小佳, 王双. 松动岩体工程特性研究——以雅砻江楞古水电站松动岩体为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1376-1388.
[12] 刘子侠, 陈剑平, 王凤艳, 韩东亮. 基于活动控制的岩体结构面几何信息快速获取[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1192-1199.
[13] 梁涛, 卢仁, 王莉. 北秦岭二郎坪岩体锆石U-Pb定年、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(2): 445-459.
[14] 王吉亮, 郝文忠, 黄孝泉, 许琦, 魏雨军, 周炳强, 徐磊. 乌东德水电站特高拱坝施工期坝基岩体质量工程地质评价[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1566-1573.
[15] 梁生贤. 互相关系数自约束的重力三维反演与高效求解[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1473-1482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[2] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[3] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[4] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[8] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .
[9] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[10] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .