吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 767-782.doi: 10.13278/j.cnki.jjuese.20200183

• 地质与资源 • 上一篇    下一篇

东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义

邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华   

  1. 四川省地质矿产勘查开发局川西北地质队, 四川 绵阳 621000
  • 收稿日期:2020-08-11 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:邓红宾(1971—),男,正高级工程师,主要从事区域地质、矿产地质方面的研究,E-mail:641801398@qq.com
  • 基金资助:
    中国地质调查局项目(12120114000201);青海省自然资源厅地质勘查基金项目(青地调勘[2017]247号)

Petro-Geochemical Characteristics and Geological Significance of Dishantou Granite Body in East Kunlun Orogenic Belt

Deng Hongbin, Li Peilong, Wei Huacai, He Wenjin, Yang Pengtao, Li Ning, Tang Hua   

  1. Sichuan Northwest Geological Team, Bureau of Exploration and Exploitation of Geology and Mineral Resources of Sichuan Province, Mianyang 621000, Sichuan, China
  • Received:2020-08-11 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the Project of China Geological Survey (12120114000201) and the Geological Exploration Fund Project of Qinghai Provincial Department of Natural Resources (Qingdidiaokan[2017]No.247)

摘要: 低山头一带花岗岩体归属东昆仑弧盆系北昆仑岩浆弧带,位于东昆仑成矿带伯喀里克—香日德成矿亚带东昆仑造山带中段,岩石类型主要为石英闪长岩、正长花岗岩及二长花岗岩。为了加强该地区花岗岩体岩石地球化学与成岩成矿背景探讨,对花岗岩体开展了主量元素、微量元素及矿质元素研究。主量元素组成上,石英闪长岩具中硅(57.64%和58.47%)、富钠(Na2O/K2O均为2.57)特点,正长花岗岩具高硅(75.45%~75.99%)、富钾(Na2O/K2O为0.74~0.94)特点,二长花岗岩具高硅(66.80%~73.45%)、富钠(Na2O/K2O为1.50~2.13)特点;花岗岩体铝饱和指数A/CNK<1,为准铝质岩浆岩;碱饱和指数NK/A集中在0.26~0.69之间,属钙碱性岩石;里特曼组合指数σ43在1.18~2.31之间,属钙碱性类型。花岗岩体轻稀土元素相对重稀土元素富集,岩浆分异特征明显,大离子亲石元素(LILE)富集Rb、K、Ba、Th、Sr、Nd,仅正长花岗岩Sr亏损,高场强元素(HFSE)富集Zr、Hf、Ce,而Nb、P、Ti明显亏损,源区物质为壳幔混合物质,属挤压应力环境中同碰撞I型花岗岩。在岩体实测剖面中获得11种元素分析数据,与青海全省、东昆仑成矿带及其亚成矿带平均元素丰度值进行对比,初步划分不同岩性、不同类型、不同时代花岗岩,以及富集的含矿元素为Au、Zn、Y、Pb等。与区域有成矿事实且为I型花岗岩成因进行对比,认为研究区有较好的找矿前景。

关键词: 岩石成因, 花岗岩体, 地球化学, 矿质元素, 东昆仑造山带, 低山头一带

Abstract: The granite body in Dishantou area belongs to the North Kunlun magmatic arc belt of the East Kunlun arc basin. It is located in the middle part of the East Kunlun orogenic belt in the Berkarik Xiangride metallogenic sub belt of the East Kunlun metallogenic belt. The main rock types are quartz diorite, syenogranite and monzogranite. To strengthen the study on the petro-geochemistry and diagenesis and metallogenic background of the granitic bodies in this area, the analysis on the major elements, trace elements, and mineral elements of the granitic bodies has been carried out. The quartz diorite has the characteristics of medium silicon (57.64% and 58.47%) and rich sodium (Na2O/K2O is 2.57) in the composition of the main elements. The syenogranite is characterized by high silicon (75.45%-75.99%) and rich potassium (Na2O/K2O is 0.74-0.94). The monzogranite is characterized by high silicon (66.80%-73.45%) and rich sodium (Na2O/K2O is 1.50-2.13). A/CNK of the granitic body is less than 1, indicating that it is aluminous magmatic rock. The alkali saturation index (NK/A) ranges from 0.26 to 0.69, belonging to calc-alkaline type. The light rare earth elements are relatively enriched in heavy rare earth elements (characteristics of magmatic differentiation), large ion lithophile elements (LILE) of Rb, K, Ba, Th, Sr and Nd, only syenogranite is depleted in Sr; Meanwhile, high field strength elements (HFSE) are rich in Zr, Hf and Ce, but Nb, P, and Ti are depleted apparently, indicating the source materials of crust-mantle mixing, formed under an extrusion stress environment with collision type I granite. In 11 kinds of elements analysis of data obtained from the rock mass, compared with the average element abundances of Qinghai Province, the East Kunlun metallogenic belt and its sub metallogenic belt, the granite types with different lithology and different ages are preliminarily divided, and the enriched ore-bearing elements are Au, Zn, Y, Pb, etc. Compared with the regional metallogenic facts and the genesis of I-type granites, the study area has a good prospecting potential.

Key words: petrogenesis, granite body, geochemistry, mineral elements, East Kunlun orogenic belt, Dishantou area

中图分类号: 

  • P581
[1] 许志琴,杨经绥,李海兵,等.造山的高原:青藏高原地体的拼合、碰撞造山及隆升机制[M].北京:地质出版社,2007:1-458. Xu Zhiqin, Yang Jingsui, Li Haibing, et al. Orogenic Plateau-Terrane Amalgamation, Colli-Sion and Uplift in the Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House,2007:1-458.
[2] 莫宣学,潘桂棠.从特提斯到青藏高原形成:构造岩浆事件的约束[J].地学前缘,2006,13(6):43-51. Mo Xuanxue,Pan Guitang. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events[J]. Earth Science Frontiers, 2006,13(6):43-51.
[3] 莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414. Mo Xuanxue, Luo Zhaohua, Deng Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007,13(3):403-414.
[4] 杜玉良,贾群子,韩生福.青海东昆仑成矿带中生代构造岩浆成矿作用及铜金多金属找矿研究[J].西北地质,2012,45(4):69-75. Du Yuliang,Jia Qunzi,Han Shengfu. Mesozoic Tectono-Magmatic-Mineralization and Copper-Gold Polymetallic Ore Prospecting Research in East Kunlun Metauogenic Belt in Qinghai[J]. Northwestern Geology, 2012, 45(4):69-75.
[5] 潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学:D辑,1996,26(4):302-307. Pan Yusheng, Zhou Weiming, Xu Ronghua, et al. Geological Characteristics and Evolution of the Early Paleozoic Kunlun[J]. Science in China:Series D, 1996, 26(4): 302-307.
[6] 丰成友,张德全,王富春,等.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,2004,25(4):415-422. Feng Chengyou,Zhang Dequan,Wang Fuchun,et al. Multiple Orogenic Processes and Geological Characteristics of the Major Orogenic Gold Deposits in East Kunlun Area,Qinghai Province[J]. Acta Geoscientia Sinica,2004, 25(4):415-422.
[7] 古凤宝.东昆仑地质特征及晚古生代-中生代构造演化[J].青海地质,1994(1):4-14. Gu Fengbao. Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaezoic-Mesozoic Era[J]. Qinghai Geology,1994(1):4-14.
[8] 王秉章.祁漫塔格地质走廊域古生代-中生代火成岩岩石构造组合研究[D].北京:中国地质大学(北京),2011:19-20. Wang Bingzhang. The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage During Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain[D]. Beijing: China University of Geosciences(Beijing), 2011:19-20.
[9] 祁生胜.青海省东昆仑造山带火成岩岩石构造组合与构造演化[D].北京:中国地质大学(北京),2015:9-10. Qi Shengsheng. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province[D]. Beijing: China University of Geosciences(Beijing), 2015:9-10.
[10] 潘桂棠,王立全,张万平,等.青藏高原及邻区大地构造图及说明书(1∶150万)[M].北京:地质出版社,2013:11-153. Pan Guitang,Wang Liquan,Zhang Wanping,et al. Qinghai-Tibet Plain and Neighbouring Area Tectonic Map and Instruction Booklet(1∶1 500 000)[M]. Beijing:Geological Publishing House, 2013:11-153.
[11] 邓红宾,何龙,姚波,等.东昆仑造山带低山头二长花岗岩形成时代及岩石地球化学特征[J].西北地质,2018,51(4):60-69. Deng Hongbin,He Long,Yao Bo,et al. Formation Age and Geochemical Characteristics of Dishantou Monzonitic Granite in Estern Kunlun Orogenic Belt[J]. Northwestern Geology,2018,51(4):60-69.
[12] Peccerillo R, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contrib Mineral Petrol,1976,58:63-81.
[13] Middlemost E A K. Naming Materials in the Magma/Igncous Rock System[J]. Earth-Science Reviews, 1994,37(3/4):215-224.
[14] Sun S S,Mc Donough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Sunders A D,Norry M J.Magmatismin the Ocean Basins.London:Special Publications, 1989:313-345.
[15] Maniar P D,Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643.
[16] 洪大卫,郭文歧,李戈晶,等.福建沿海晶洞花岗岩带的岩石学和成因演化[M].北京:科学技术出版社,1987:1-132. Hong Dawei,Guo Wenqi,Li Gejing,et al. Fujian Coastalpetrography Lithology of Crystal Cave Granite Beltand Genesis Evolution[M]. Beijing: Science and Technology Press,1987:1-132.
[17] 邱家骧.岩石化学[M].北京:地质出版社,1991:65-67. Qiu Jiaxiang. Petrochemistry[M]. Beijing:Geological Publishing House, 1991:65-67.
[18] Chappell B W. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites[J]. Lithos, 1999, 46(3): 535-551.
[19] Chappell B W, White A J R. I- and S-Type Granites in the Lachlan Fold Belt[J]. Geological Society of America Special Papers, 1992, 272:1-26.
[20] Chappell B W,White A J R.Two Constrasting Granite Types[J]. Pacific Geology,1974,8:173-174.
[21] Chappell B W,White A J R.Two Contrasting Granite Types: 25 Years Later[J]. Australian Journal of Earth Sciences,2001,48(4):489-499.
[22] Nakada S, Takahashi M. Regional Variationin Chemistry of the Miocene Intermediate to Felsic Magmas in the Outer Zone and the Setouchi Province of Southwest Japan[J]. The Geological Society of Japan, 1979, 85(9): 571-582.
[23] Collins W,Beams S,White A, et al. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200.
[24] Frey F A. Integrated Models of Basalt Petrogenesis:A Study of Quartze Tholeiites to Olivine Melilities from South Easthern Australia Vtilizing Geochemical and Experimental Petrological Data[J]. Journal of Petrology, 1978,119:463-513.
[25] Rapp R P, Watson E B.Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology,1995,36(4):891-931.
[26] Greem T H. Significance of Nb/Ta as Indicator of Geochemical Processes in the Crust-Mantle System[J]. Chem Geol, 1995,120:347-359.
[27] Rudnick R L,Fountain D M. Nature and Composition of the Crust:A Lower Crustal Perspecuve[J]. Reriew Geophysics, 1995,33:267-309.
[28] Greem T H,Pearson N J. An Experimental Study of Nb and Ta Partitioning Between Ti-Rich Minerals and Silicate Liquids at High Pressure and Temperature[J]. Geochim Cosmochim Acta, 1987,51:55-62.
[29] Barth M G,Mcdonough W F,Rudnick R L. Tracking the Budger of Nb and Ta in the Continental Crust[J]. Chem Geol, 2000,165:197-213.
[30] Pearce J A. Source and Settings of Granitic Rocks[J]. Epi-Sodes, 1996,19(4): 120-125.
[31] Maniar P D,Piccoli P M. Tectonic Discrimination of Granit-Oids[J]. Geological Society of American Bulletin,1989,101:635-643.
[32] 丰成友,王松,李国臣,等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报,2012,28(2):665-678. Feng Chengyong,Wang Song,Li Guochen,et al. Middle to Late Triassic Granitoids in the Qimantage Area,Qinghai Province,China:Chronology,Geochemistry and Metallogenic Significanced[J]. Acta Petrologica Sinica,2012,28(2):665-678.
[33] 杨涛,李智明,张乐,等.东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J].高校地质学报,2017,23(3):452-464. Yang Tao,Li Zhiming,Zhang Le, et al. Geological and Geochemical Characteristics of the Tawenchahanxi Granites in East Kunlun and Its Tectonic Significance[J]. Geological Journal of China Universities,2017,23(3):452-464.
[34] 曹建辉,袁万明,郝娜娜,等.东昆仑沟里地区花岗岩年代学、岩石地球化学及其地球动力学意义[J].地质科技情报,2015,34(2):42-51. Cao Jianhui,Yuan Wanming,Hao Nana, et al.Geochronology,Geochemistry and Geodynamic Implications of the Gouli Area Granites in East Kunlun Mountains[J]. Geological Science and Technology Information,2015,34(2):42-51.
[35] 殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学:中国地质大学学报,1997,22(4):339-342. Yin Hongfu, Zhang Kexin. Characteristics of the Eastern Kunlun Orogenic Belt[J]. Earth Science:Journal of China University of Geosciences, 1997,22(4): 339-342.
[36] 陆松年.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002:1-125. Lu Songnian.The Qinghai-Tibet Plateau North of Precambrian Geology[M]. Beijing: Geology Publishing House, 2002:1-125.
[37] 刘战庆,裴先治,李瑞保,等.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据[J].中国地质,2011,38(5):1150-1167 Liu Zhanqing, Pei Xianzhi, Li Ruibao, et al. Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area Along the Buqingshan Tectonic Melange Belt on the Southern Margin of East Kunlun:Constraints from Zircon U-Pb Dating and Geochemistry[J]. Geology in China, 2011,38(5):1150-1167.
[38] 李荣社,计文化,赵振明,等.昆仑早古生代造山带研究进展[J].地质通报,2007,26(4):373-382. Li Rongshe, Ji Wenhua, Zhao Zhenming, et al. Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt[J]. Geological Bulletin of China, 2007,26(4): 373-382.
[39] 张智勇,张克信,朱云海,等.昆秦接合部志留—泥盆纪侵入岩及其构造环境[J].地球科学:中国地质大学学报,2005,30(2):159-167. Zhang Zhiyong,Zhang Kexin,Zhu Yunhai, et al. Silurian Devonian Intrusive Rocks and Their Tectonic Environments in the Kunqin Junction[J]. Earth Science:Journal of China University of Geosciences, 2005,30(2):159-167.
[40] 陆露,吴珍汉,胡道功,等.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J].岩石学报,2010,26(4):1150-1158. Lu Lu,Wu Zhenhan,Hu Daogong, et al.Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains[J]. Acta Petrologica Sinica, 2010, 26(4): 1150-1158.
[41] 程龙,丁清峰,邓元良,等.东昆仑五龙沟矿集区中三叠世辉绿岩脉的岩石成因:年代学、地球化学特征及其构造意义[J].吉林大学学报(地球科学版),2019,49(6):1628-1648. Cheng Long, Ding Qingfeng, Deng Yuanliang, et al. Petrogenesis of Middle Triassic Diabase Veins in Wulonggou Ore Concentrated Areas with in East Kunlun Orogen: Chronology, Geochemistry and Tectonic Significance[J]. Journal of Jilin University (Earth Science Edition), 2019,49(6):1628-1648.
[42] 罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质,1999,13(1): 51-56. Luo Zhaohua, Deng Jinfu, Cao Yongqing, et al. Volcanism and Regional Tectonic Evolution During Late Paleozoic-Early Mesozoic Period in the East-Kunlun, Qinghai Province[J]. Geoscience, 1999,13(1): 51-56.
[43] 袁万明,莫宣学,喻学惠,等.东昆仑早石炭世火山岩的地球化学特征及其构造背景[J].岩石矿物学杂志,1998,17(4):289-295. Yuan Wanming,Mo Xuanxue,Yu Xiehui,et al. Geochemical Characteristics and Tectonic Setting of the Early Carboniferous Volcanic Rocks in East Kunlun Mountains[J]. Acta Petrologica et Mineralogica, 1998,17(4):289-295.
[44] 莫宣学.青藏高原地质研究的回顾与展望[J].中国地质,2010,37(4):841-853. Mo Xuanxue. Review and Prospect of Geological Research in Qinghai-Tibet Plateau[J]. Chinese Geology, 2010,37(4):841-853.
[45] 南卡俄吾,贾群子,李文渊,等.青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J].地质通报,2014,33(6):841-849. Namhka Norbu, Jia Qunzi,Li Wenyuan,et al. LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of Quartz Diorite from the Haxiyatu Iron-Polymetallic Ore District in Eastern Kunlun[J]. Geological Bulletin of China, 2014,33(6):841-849.
[46] 李金超,贾群子,杜玮,等.东昆仑东段阿斯哈矿床石英闪长岩LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J].吉林大学学报(地球科学版),2014,44(4):1188-1199. Li Jinchao,Jia Qunzi,Du Wei,et al.LA-ICP-MS Zircon Dating and Geochemical Characteristics of Quartz Diorite in Asiha Gold Deposit in East Segment of the Eastern Kunlun[J]. Journal of Jilin University(Earth Science Edition),2014,44(4):1188-1199.
[47] 高永宝.东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D].西安:长安大学,2013:200-201. Gao Yongbao. The Intermediate-Acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Mountains[D].Xi’an: Chang’an University, 2013:200-201.
[48] 丰成友,王雪萍,舒晓峰,等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报(地球科学版),2011,41(6):1806-1817. Feng Chengyou,Wang Xueping,Shu Xiaofeng,et al. Isotopic Chronology of the Hutouya Skarn Lead-Zinc Ore District in Qimantage Area of Qinghai Province and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edition),2011,41(6):1806-1817.
[49] 伍跃中,乔耿彪,陈登辉.东昆仑祁漫塔格地区构造岩浆作用与成矿关系初步探讨[J].大地构造与成矿学,2011,35(2):232-241. Wu Yuezhong,Qiao Gengbiao,Chen Denghui. Preliminary Study on the Relationship Between Tectonic Magmatism and Mineralization in Qimantage Area, Eastern Kunlun[J]. Tectonics and Mineralization, 2011,35(2):232-241.
[50] 高永宝,李文渊,李侃,等.东昆仑祁漫塔格早中生代大陆地壳增生过程中的岩浆活动与成矿作用[J].矿床地质,2017, 36(2):463-482. Gao Yongbao,Li Wenyuan,Li Kan, et al. Magmatism and Mineralization During Early Mesozoic Continental Accretion Process in Qimantag,East Kunlun Mountains[J]. Mineral Deposits,2017,36(2):463-482.
[51] 乔保星,潘彤,陈静.东昆仑野马泉铁多金属矿床花岗闪长岩年代学、地球化学特征及其地质意义[J].青海大学学报(自然科学版),2016,34(1): 63-73. Qiao Baoxing,Pan Tong,Chen Jing. Geochronology,Geochemical Characteristics and Geological Significance of Granodiorite in Yemaquan Iron Polymetallic Deposit of the East Kunlun[J]. Journal of Qinghai University(Natural Science Edition), 2016,34(1): 63-73.
[1] 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752.
[2] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[3] 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852.
[4] 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972.
[5] 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053.
[6] 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118.
[7] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081.
[8] 孙超, 苟军, 孙德有, 冯钊, 田丽. 黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1082-1097.
[9] 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138.
[10] 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693.
[11] 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722.
[12] 张超, 石绍山, 时溢, 魏明辉, 杨帆, 郇恒飞, 李文博, 王路远. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 2021, 51(3): 734-748.
[13] 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749-766.
[14] 康鹏宇, 刘传朋, 梁成, 冯爱平, 刘同, 宗传攀. 沂蒙山区土壤质量地球化学评价方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 877-886.
[15] 田兴旺, 罗冰, 孙奕婷, 刘冉, 李亚, 陈延贵, 周春林, 汪华, 李亚丁, 王尉, 王云龙, 杨岱林. 二叠系火山碎屑岩气藏天然气地球化学特征及气源分析——以四川盆地成都—简阳地区永探1井为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 325-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高松, 宋莹, 王琳,蒋步新. 水体中秋兰姆特效降解菌的筛选及其降解性能研究[J]. J4, 2006, 36(03): 455 -457 .
[2] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[3] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[4] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[5] 李松, 汤达祯, 王炜, 许浩, 杨紫, 陈晓智, 崔立伟. 鄯勒油田西山窑组层序地层格架及其油气地质意义[J]. J4, 2011, 41(4): 983 -991 .
[6] 曾玉超, 苏正, 吴能友, 王晓星, 胡剑. 漳州地热田基岩裂隙水系统温度分布特征[J]. J4, 2012, 42(3): 814 -820 .
[7] 何俊,冶雪艳. 基于有机污染物扩散的复合衬垫厚度的概率设计[J]. 吉林大学学报(地球科学版), 2013, 43(1): 228 -234 .
[8] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[9] 钟宇红,房春生,邱立民,吕莉莎,张子宜,董德明,于连贵,刘 辉,刘春阳,苏红石,赵 静. 扫描电镜分析在大气颗粒物源解析中的应用[J]. J4, 2008, 38(3): 473 -0478 .
[10] 刘俊来, 唐渊, 宋志杰, Tran My Dung, 翟云峰, 吴文彬, 陈文. 滇西哀牢山构造带:结构与演化[J]. J4, 2011, 41(5): 1285 -1303 .