吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1723-1731.doi: 10.13278/j.cnki.jjuese.20180321

• 地质工程与环境工程 • 上一篇    下一篇

缝网间距对高温岩体储留层温度影响规律模拟

孙可明1,2, 张宇1   

  1. 1. 辽宁工程技术大学力学与工程学院, 辽宁 阜新 123000;
    2. 青岛理工大学理学院, 山东 青岛 266520
  • 收稿日期:2018-12-06 发布日期:2019-11-30
  • 作者简介:孙可明(1968-),男,教授,主要从事渗流理论及工程应用等方面的教学与研究工作,E-mail:sskkmm11@163.com
  • 基金资助:
    国家自然科学基金项目(51574137);科技部重大专项(2017ZX05037-001);辽宁省教育厅一般项目(LJYL047)

Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs

Sun Keming1,2, Zhang Yu1   

  1. 1. College of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China;
    2. School of Science, Qingdao University of Technology, Qingdao 266520, Shandong, China
  • Received:2018-12-06 Published:2019-11-30
  • Supported by:
    Supported by National Natural Science Foundation of China (51574137); Major Project of Ministry of Science and Technology (2017ZX05037-001) and General Project of Liaoning Provincial Department of Education (LJYL047)

摘要: 为研究高温岩体储留层注水过程中缝网间距对储留层岩体温度的影响规律,建立了考虑热对流和热传导效应的热流固耦合力学模型。以水平井多簇缝网地热开发为例,将缝网及其周围岩体简化为等效的多孔介质,利用ABAQUS二次开发功能实现了流固耦合和热对流耦合。模拟结果表明:储留层岩体温度的变化按注水持续时间分为3个阶段:初温保持阶段,该阶段储留层岩体温度保持原始温度,缝网间距的不同对储留层岩体整体温度无影响;快速降温阶段,该阶段储留层岩体温度下降随注水时间呈现负指数变化规律,缝网间距与储留层岩体温度呈正相关关系;温度缓慢下降平稳阶段,该阶段初期缝网间距与储留层岩体温度的关系和快速降温阶段一致,但后期缝网间距与储留层岩体温度呈负相关关系。空间上,在岩体温度高的区域,缝网间距越小,岩体温度变化梯度越大;在岩体温度较低的区域,缝网间距越小,岩体温度变化梯度越小。

关键词: 高温岩体储留层, 热流固耦合力学模型, 数值模拟, 缝网间距

Abstract: A T-H-M (thermal-hydraulic-mechanical) coupling mechanical model considering the effect of thermal convection and thermal conduction is built to study the influence of fracture-network spacing on temperature of reservoir rock mass during water injection for HDR geothermal reservoirs. Taking the horizontal well with multiple-fracture-network geothermal development as an example, the fracture-network and its surrounding rocks are regarded as an equivalent porous medium, the coupling of H-M coupling and thermal convection is achieved by the secondary development of ABAQUS. The simulation results show that the temperature change of the reservoir rock mass falls into three stages during water injection:in the initial temperature maintaining stage, the rock mass temperature remains initial, and there is no effect of different fracture-networks spacings on the temperature of overall reservoir rock mass; in the temperature rapid declining stage, the temperature decline of the reservoir rock mass shows a negative exponential with the water injection time, and the fracture-network spacings are positively correlated with the temperature of reservoir rock mass; the third stage is the temperature slow and steady declining stage, at the beginning of this stage, the relationship between the fracture-network spacings and the temperature of reservoir rock mass are consistent with that in the temperature rapid declining stage, however, at the end of this stage, the fracture-network spacings are negatively correlated with the temperature of reservoir rock mass. In space, the smaller the fracture-network spacing, the greater the gradient temperature changes of reservoir rock mass in the area where rock mass temperature is high; while the smaller the fracture-network spacing, the smaller the gradient temperature changes of reservoir rock mass in the area where rock mass temperature is low.

Key words: hot dry rock geothermal reservoirs, thermal-hydraulic-mechanical coupling mechanical model, numerical simulation, fracture-network spacing

中图分类号: 

  • P341
[1] 许天福,袁益龙,姜振蛟,等. 干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152. Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, et al. Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1139-1152.
[2] 黄顺平. 地热能开采过程多场耦合数值模拟与分析[D].北京:北京交通大学,2018. Huang Shunping. Numerical Simulation of Multi-Field Coupling Process and Analysis in Geothermal Energy Mining[D]. Beijing:Beijing Jiaotong University, 2018.
[3] 赵延林,王卫军,赵阳升,等. 双重介质热-水-力三维耦合模型及应用[J].中国矿业大学学报,2010,39(5):709-715. Zhao Yanlin, Wang Weijun, Zhao Yangsheng, et al. 3D Dual Medium Model of Thermal-Hydro-Mechanical Coupling and Its Application[J]. Journal of China University of Mining & Technology, 2010, 39(5):709-715.
[4] 陈必光. 地热对井裂隙岩体中渗流传热过程数值模拟方法研究[D]. 北京:清华大学,2014. Chen Biguang. Study on Numerical Methods for Coupled Fluid Flow and Heat Transfer in Fractured Rocks of Doublet System[D]. Beijing:Tsinghua University, 2014.
[5] 蔺文静,刘志明,马峰,等. 我国陆区干热岩资源潜力估算[J]. 地球学报,2012,33(5):807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An Estimation of HDR Resources in China's Mainland[J]. Acta Geoscientica Sinica, 2012, 33(5):807-811.
[6] 国家发展和改革委员会,国家能源局. 能源发展"十三五"规划[J]. 中国电力企业管理,2017(1):7. National Development and Reform Commission, National Energy Administration of the People's Republic of China. The 13th Five-Year Plan for Energy Development[J]. China Power Enterprise Management, 2017(1):7.
[7] 国务院办公厅. 能源发展战略行动计划(2014-2020年)(摘录)[J].上海节能,2014(12):1-2. General Office of the State Council of the People's Republic of China.Energy Development Strategic Action Plan (2014-2020) (Excerpt)[J]. Shanghai Energy Conservation, 2014(12):1-2.
[8] 陆川,王贵玲. 干热岩研究现状与展望[J].科技导报,2015,33(19):13-21. Lu Chuan, Wang Guiling. Current Status and Prospect of Hot Dry Rock Research[J]. Science & Technology Review, 2015, 33(19):13-21.
[9] 廖志杰,万天丰,张振国. 增强型地热系统:潜力大、开发难[J].地学前缘,2015,22(1):335-344. Liao Zhijie, Wan Tianfeng, Zhang Zhenguo. The Enhanced Geothermal System(EGS):Huge Capacity and Difficult Exploitation[J]. Earth Science Frontiers, 2015, 22(1):335-344.
[10] 赵阳升,王瑞凤,胡耀青,等. 高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,21(12):1751-1755. Zhao Yangsheng, Wang Ruifeng, Hu Yaoqing, et al. 3D Numerical Simulation for Coupled THM of Rock Matrix-Fractured Media in Heat Extraction in HDR[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12):1751-1755.
[11] 段云星. 干热岩地热资源开采井网优化数值模拟研究[D].北京:中国地质大学(北京),2017. Duan Yunxing. Numerical Simulation of Well Pattern Optimization for Hot Dry Rock Geothermal Resources Exploitation[D] Beijing:China University of Geosciences(Beijing), 2017.
[12] 康健,赵明鹏,赵阳升,等. 随机介质固热耦合模型与高温岩体地热开发人工储留层二次破裂数值模拟[J].岩石力学与工程学报,2005,24(6):969-974. Kang Jian, Zhao Mingpeng, Zhao Yangsheng, et al. Random Non-Homogeneous Solid-Heat Coupled Model and Numerical Simulations of Second Fracturing for Man-Made-Reserve Stratum in HDR[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6):969-974.
[13] Vik H S, Salimzadeh S, Nick N M. Heat Recovery from Multiple-Fracture Enhanced Geothermal Systems:The Effect of Thermoelastic Fracture Interactions[J]. Elsevier Ltd, 2018, 121:606-622.
[14] Sun Z X, Xin Y, Yao J, et al. Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model[J]. MDPI, 2018, 11(2):280.
[15] 王曌龙. 裂隙岩体热流固耦合模型研究及应用[D].徐州:中国矿业大学,2015. Wang Zhaolong. Study on the Coupled Thermal-Hydrologic-Mechanical Model in Fractured Rock Mass and Its Application[D]. Xuzhou:China University of Mining and Technology, 2015.
[16] 王瑞凤. 高温岩体地热开发的固流热多场耦合与数值仿真[D].太原:太原理工大学,2002. Wang Ruifeng. 3D Solid-Fluid-Heat Coupled Numerical Simulation in Exploitation of HDR[D]. Taiyuan:Taiyuan University of Technology, 2002.
[17] 白冰. 饱和多孔介质热-水-力控制方程耦合项的意义及耦合影响分析[J].岩土力学,2006,27(4):519-524,536. Bai Bing. Effects of Coupling Schemes of Thermo Hydro-Mechanical Governing Equations for saturated Porous Medium[J]. Rock and Soil Mechanics, 2006, 27(4):519-524, 536.
[1] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[2] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[3] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[4] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[5] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[6] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[7] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[8] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[9] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[10] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[11] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[12] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[13] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[14] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[15] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!