吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1129-1136.doi: 10.13278/j.cnki.jjuese.20170334

• 地质工程与环境工程 • 上一篇    下一篇

电容去离子化去除地下水中镉的影响因素

董军1,2, 李文德1,2, 陈建隆3, 吴玥1,2, 鹿豪杰1,2   

  1. 1. 吉林大学新能源与环境学院, 长春 130021;
    2. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021;
    3. 逢甲大学理学院环境工程与环境科学学系, 台湾 台中 407
  • 收稿日期:2017-12-27 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:董军(1976-),男,教授,博士生导师,主要从事污染场地的模拟、控制与修复等方面的研究,E-mail:dongjun@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41272253);吉林大学研究生创新基金资助项目(2017074)

Influencing Factors of Cadmium Removal from Groundwater by Capacitive Deionization

Dong Jun1,2, Li Wende1,2, Chen Jianlong3, Wu Yue1,2, Lu Haojie1,2   

  1. 1. College of New Energy and Environment, Jilin University, Changchun 130021, China;
    2. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China;
    3. Department of Environment Engineering and Science, Feng Chia University, Taizhong 407, Taiwan, China
  • Received:2017-12-27 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41272253) and Graduate Innovation Fund of Jilin University(2017074)

摘要: 以高比表面积活性炭作为吸附剂制备电容电极,研究电容去离子化(CDI)对地下水中镉的吸附性能。分别探讨了镉初始质量浓度、体系供电电压、地下水中常见阳离子种类对CDI去除镉的影响。结果表明,CDI吸附镉符合准二级吸附动力学、满足Langmuir等温吸附方程,CDI对镉的吸附为单分子层吸附。吸附量随镉初始质量浓度的升高而增加;在低质量浓度时,较高的供电电压会提高初始阶段的吸附速率,但对电极的最终吸附量无显著影响;地下水中主要阳离子的存在增加了体系的电导率,从而促进了CDI对镉的吸附,提高了镉的吸附速率和去除率。

关键词: 活性炭, 电容去离子化, 吸附,

Abstract: By using high-surface-area activated carbon as adsorbent manufacturing electrode, the authors studied the effects of capacitive deionization for cadmium removal from groundwater, and discussed the influences of initial concentration, supply voltage and common cation in groundwater on capacitive deionization for cadmium removal. The results show that the adsorption of cadmium by CDI is monolayer adsorption,which conforms to quasi-second order adsorption kinetics, and satisfies Langmuir isothermal adsorption equation. The adsorption capacity increases with the increase of the initial concentration; at lower concentration, higher voltage increases the adsorption rate at initial stage, but has no significant effect on the final adsorption capacity of the electrode; the main cations in underground water increase conductivity of solution and improve cadmium adsorption rate and removal rate.

Key words: activated carbon, capacitive deionization, adsorb, cadmium

中图分类号: 

  • X523
[1] 胡曦尹,冯扬,李岩. 镉中毒与金属硫蛋白表达的研究进展[J]. 职业与健康,2017,33(21):3022-3025. Hu Xiyin, Feng Yang, Li Yan. Advancements in Cadmium Intoxication and Metallothionein Expression[J]. Occupation and Health, 2017,33(21):3022-3025.
[2] 代群威,王可,王岩,等. 灭活面包酵母菌对水溶液中镉离子的吸附特性[J]. 河北大学学报(自然科学版),2017,37(5):523-530. Dai Qunwei, Wang Ke, Wang Yan, et al. Biosorption of Cadmium Ions from Solution by Nonliving Saccharomyces Cerevisiae[J]. Journal of Hebei University (Natural Science Edition), 2017,37(5):523-530.
[3] 钟志文.蒸发浓缩前期预处理火焰原子吸收分光光度法测定地下水中镉的探讨[J].广东化工,2014,41(8):140-141. Zhong Zhiwen. The Pretreatment for the Determination of Cadmium in Water by Flame Atomic Absorption Spectrophotometry of Evaporation[J]. Guangdong Chemical Industry, 2014,41(8):140-141.
[4] 周长松,邹胜章,李录娟,等. 岩溶区典型石灰土Cd形态指示意义及风险评价:以桂林毛村为例[J]. 吉林大学学报(地球科学版),2016,46(2):552-562. Zhou Changsong, Zou Shengzhang, Li Lujuan, et al. Implications of Cadmium Forms and Risk Assessment of Calcareous Soil in Karst Area:A Case Study of Maocun in Guilin,China[J]. Journal of JiLin University (Earth Science Edition),2016,46(2):552-562.
[5] 李佳,霍丽娟,钱天伟. 硫化亚铁纳米粒子吸附地下水中的镉[J]. 环境工程学报,2016,10(3):1264-1270. Li Jia, Huo Lijuan, Qian Tianwei. Sorption of Cadmium in Groundwater by FeS Nanoparticles[J]. Chinese Journal of Environmental Engineering, 2016,10(3):1264-1270.
[6] Suss M E, Porada S, Sun X, et al. Water Desalination via Capacitive Deionization:What Is It and What Can We Expect from It?[J]. Energy & Environmental Science, 2015,8(8):2296-2319.
[7] Mossad M, Zhang W, Zou L. Using Capacitive Deionisation for Inland Brackish Groundwater Desalination in a Remote Location[J]. Desalination, 2013,308(2):154-160.
[8] 尹广军,陈福明. 电容去离子研究进展[J]. 水处理技术,2003,29(2):63-66. Yin Guangjun, Chen Fuming. Research Progress of Capacitor Deionization[J]. Technology of Water Treatment, 2003,29(2):63-66.
[9] Suss M E, Baumann T F, Bourcier W L, et al. CapacitiveDesalination with Flow-Through Electrodes[J]. Energy & Environmental Science, 2012,5(11):9511-9519.
[10] Hemmatifar A, Stadermann M, Santiago J G. Two-Dimensional Porous Electrode Model for Capacitive Deionization[J]. The Journal of Physical Chemistry C, 2015, 119(44):24681-24694.
[11] 刘红,王刚,王六平,等. 电容去离子脱盐技术:离子交换膜复合活性炭电极的性能[J]. 化工学报,2012,63(5):1512-1516. Liu Hong, Wang Gang, Wang Liuping, et al. Capacitive Deionization (CDI) Technology for Desalination of Sea Water:Properties of Carbon Electrode Materials Made of Activated Carbon and Ion-Exchange Membranes[J]. CIESC Journal, 2012,63(5):1512-1516.
[12] Bieshuvel P M, Hamelers H V M, Suss M E. Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge[J]. Colloids and Interface Science Communications, 2015,9:1-5.
[13] 李琛,张莉,王凯,等. 双电层超级电容器的矩阵式模型研究[J]. 电子元件与材料,2011,30(4):41-44. Li Chen, Zhang Li, Wang Kai, et al. Study on the Matrix Model for the Double Layer Super-Capacitor[J]. Electronic Components and Materials, 2011,30(4):41-44.
[14] Jeon S I, Park H R, Yeo J G, et al. Desalination via a New Membrane Capacitive Deionization Process Utilizing Flow-Electrodes[J]. Energy & Environmental Science, 2013,6(5):1471-1475.
[15] Bouhadana Y, Avraham E, Noked M, et al. Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions:Inversion Functionality of the Carbon Electrodes[J]. The Journal of Physical Chemistry C, 2011, 115(33):16567-16573.
[16] 王璇,邱键俊,徐思飞. 原子吸收测定镉标准曲线相关系数的不确定度分析[J]. 山东化工,2016,45(1):62-63. Wang Xuan, Qiu Jianjun, Xu Sifei. Determination of Uncertainty of Correlation Coefficient of Cadmium Standard Curve by Atomic Absorption Spectrometry[J]. Shandong Chemical Industry, 2016,45(1):62-63.
[17] 高心岗,吴得福,李洪杰,等. 氢化物发生-原子荧光法测定地下水中的镉[J]. 化学分析计量, 2016,25(6):30-33. Gao Xingang, Wu Defu, Li Hongjie, et al. Determination of Cadmium in Groundwater by Hydride Generation-Atomic Fluorescence Spectro-metry[J]. Chemical Analysis and Meterage, 2016,25(6):30-33.
[18] 张波涛,董德明,杨帆,等. 溶液离子强度对自然水体生物膜吸附Pb2+和Cd2+的影响[J]. 吉林大学学报(地球科学版), 2004,34(4):566-570. Zhang Botao, Dong Deming, Yang Fan, et al. Effect of Ionic Strength in Solution on Pb2+ and Cd2+ Adsorption to Surface Coatings[J]. Journal of Jilin University (Earth Science Edition), 2004,34(4):566-570.
[19] 孔岩,韩志勇,庄媛,等. 磁性高分子复合水凝胶的制备及其对水中铜离子的吸附性能[J]. 环境科学学报:2018,38(3):1001-1009. Kong Yan, Han Zhiyong, Zhuang Yuan, et al. Preparation of Magnetic Polymer Hydrogel and Their Application for Removal Cu(Ⅱ) from Water[J]. Acta Scientiae Circumstantiae, 2018,38(3):1001-1009.
[20] Ho Y S, McKay G. Pseudo-Second Order Model for Sorption Processes[J]. Process Biochemistry, 1999,34(5):451-465.
[1] 何俊, 王小琦, 颜兴, 万娟, 朱志政. 溶液和温度作用下膨润土防水毯的渗透性能[J]. 吉林大学学报(地球科学版), 2019, 49(3): 807-816.
[2] 宋志伟, 李婷, 易宏云, 邱杰, 张迪, 陈丹凤. 好氧颗粒污泥对有机污染物的吸附机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 868-873.
[3] 谷团. 牛角塘伴生型镉矿床特殊的成矿环境[J]. 吉林大学学报(地球科学版), 2017, 47(2): 464-476.
[4] 刘娜, 杨亚冬, Alberto Bento Charrua, 王航, 叶康, 吕春欣. 响应曲面法优化生物质炭去除水溶液中的阿特拉津[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1199-1207.
[5] 王飞宇, 冯伟平, 关晶, 贺志勇. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报(地球科学版), 2016, 46(2): 388-397.
[6] 周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元. 岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562.
[7] 张凤君, 贾晗, 刘佳露, 董佳新, 卢伟, 吕聪. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1515-1522.
[8] Alkali Mohammed,杨悦锁,杜新强,杨明星,Abdullahi Musa. 内分泌干扰物的环境危害:雌激素及其硫酸盐在土壤中的吸附规律[J]. 吉林大学学报(地球科学版), 2013, 43(2): 573-0581.
[9] 成杭新,杨晓波,李括,刘飞,杨柯,聂海峰,彭敏,赵传冬,刘英汉. 辽河流域土壤酸化与作物籽实镉生物效应的地球化学预警[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1889-1895.
[10] 邹东雷, 唐抒圆, 熊厚峰, 唐绍福, 李春华, 陈鹏. β-环糊精交联聚合物对氯苯的吸附特性[J]. J4, 2012, 42(4): 1166-1172.
[11] 张先富, 李卉, 洪梅, 宋博宇, 张福全, 梁爽. 苏打盐碱土对氮转化的影响[J]. J4, 2012, 42(4): 1145-1150.
[12] 黄冠星, 王莹, 刘景涛, 张玉玺, 张英. 污灌土壤对铅的吸附和解吸特性[J]. J4, 2012, 42(1): 220-225.
[13] 郭平, 宋杨, 谢忠雷, 张迎新, 李悦铭, 张赛. 冻融作用对黑土和棕壤中Pb、Cd吸附/解吸特征的影响[J]. J4, 2012, 42(1): 226-232.
[14] 张兰英, 张蕾, 岳建伟, 刘娜, 孙恒战. 吗啉废水的生化处理工艺[J]. J4, 2011, 41(2): 536-540.
[15] 李鱼, 李娟, 高茜, 王岙. 共存镉/铜对沉积物(生物膜)中主要组分吸附阿特拉津的影响[J]. J4, 2010, 40(6): 1435-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[2] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .
[3] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[4] 姜月华,殷鸿福,王润华,康晓钧. 湖州市土壤磁化率与重金属元素分布规律及其相关性研究[J]. J4, 2005, 35(05): 653 -660 .
[5] 李绪谦,商书波,林亚菊,周洪义,侯 戈. 石油类污染物在包气带土层中的水化学迁移率测定[J]. J4, 2005, 35(04): 501 -0504 .
[6] 覃如府,许惠平,叶 娜,欧少佳,卢 焱. 中国岩石圈三维结构数据库地理信息系统设计[J]. J4, 2005, 35(04): 529 -0534 .
[7] 祝洪臣,张炯飞,权 恒. 大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境[J]. J4, 2005, 35(04): 436 -0442 .
[8] 曲希玉,刘 立,陈建文,李 刚. 南黄海盆地北部坳陷白垩系沉积特征[J]. J4, 2005, 35(04): 443 -0448 .
[9] 张新荣,胡克,介冬梅,王东坡,刘莉莉. 泥炭沉积中植硅体对环境指示的意义——以吉林敦化泥炭剖面为例[J]. J4, 2005, 35(06): 694 -0698 .
[10] 史建南,姜建群,陈富新,顾国忠. 大民屯凹陷超压发育机制及其成藏意义[J]. J4, 2005, 35(06): 745 -0750 .