吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 226-233.doi: 10.13278/j.cnki.jjuese.20180267

• 地质工程与环境工程 • 上一篇    

地下水系统中镍污染和天然胶体共迁移特征

杨悦锁1,2, 朱一丹1, 张文卿1, 武宇辉1, Yu Tong3, 张大志4   

  1. 1. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021;
    2. 区域污染环境生态修复教育部重点实验室(沈阳大学), 沈阳 110044;
    3. 巴黎萨克雷大学土壤力学、结构和材料实验室, 法国 伊维特河畔吉夫 91190;
    4. 黑龙江省生态地质调查研究总院, 哈尔滨 150030
  • 收稿日期:2018-09-19 发布日期:2020-02-11
  • 作者简介:杨悦锁(1962-),男,教授,博士生导师,主要从事地下水科学与工程、土壤污染防控和修复方面的研究,E-mail:yangyuesuo@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41472237);沈阳市科技计划项目(Z17-5-079);黑龙江省生态地质专项(201507)

Co-Migration of Nickel and Natural Colloids in Groundwater System

Yang Yuesuo1,2, Zhu Yidan1, Zhang Wenqing1, Wu Yuhui1, Yu Tong3, Zhang Dazhi4   

  1. 1. Key Laboratory of Groundwater Environment and Resources, Ministry of Education(Jilin University), Changchun 130021, China;
    2. Key Laboratory of Regional Environment and Eco-Restoration, Ministry of Education(Shenyang University), Shenyang 110044, China;
    3. Laboratory of Soil Mechanics, Structures and Materials, University of Paris-Saclay, 91190, Gif sur Yvette, France;
    4. General Institute of Eco-Geologic Survey of Heilongjiang Province, Harbin 150030, China
  • Received:2018-09-19 Published:2020-02-11
  • Supported by:
    Supported by National Natural Science Foundation of China (41472237),Shenyang Sci-Tech Program (Z17-5-079) and Heilongjiang EcoGeo Major Project(201507)

摘要: 为了对地下水系统中天然胶体与Ni2+的共迁移特征进行研究,通过静态吸附实验和石英砂模拟含水层介质柱实验研究了土壤胶体对Ni2+在地下水中运移的影响,以及pH、离子强度(IS)、有机质等对土壤胶体吸附Ni2+的影响。结果表明:随着pH值升高,土壤胶体对Ni2+的吸附量增加;离子强度的增加会显著地降低土壤胶体吸附Ni2+的能力;腐殖酸(HA)的存在会增强胶体对Ni2+的吸附能力;在有胶体的情况下,Ni2+穿透砂柱的时间会缩短,吸附能力增强,吸附量增加,但当离子强度增加时,虽然Ni2+穿透砂柱的时间也被缩短,但是吸附量却降低。

关键词: 重金属, 镍, 吸附, 共迁移, 胶体, 地下环境

Abstract: In order to study the co-migration characteristics of natural soil colloids and Ni2+ in a groundwater system, the effect of natural soil colloids on the migration of Ni2+ in groundwater and the influence of pH, ionic strength (IS), and organic matter on the adsorption of Ni2+ by soil colloids were analyzed by means of static adsorption experiments and column technique of quartz sand simulation medium. The results show that the adsorption of heavy metals on soil colloids was increased by increasing pH, but reduced significantly by the increase of ionic strength; the adsorption capacity of colloids on Ni2+ was increased by the presence of humic acid; in the presence of colloids, the time of the Ni2+ penetrating sand column was shortened, the adsorption capacity of soil colloids was enhanced, and the amount of adsorption was increased; however, when the ionic strength increased, although the time of Ni2+ penetrating through the sand column was shortened, the amount of adsorption was decreased.

Key words: heavy metal, nickel, adsorption, co-migration, colloids, subsurface environment

中图分类号: 

  • X52
[1] 陈能场, 郑煜基, 何晓峰,等. 《全国土壤污染状况调查公报》探析[J]. 中国环保产业, 2014, 36(5):1689-1692. Chen Nengchang, Zheng Yuji, He Xiaofeng, et al. Analysis of the Report on the National General Survey of Soil Contamination[J]. China Environmental Protection Industry, 2014, 36(5):1689-1692.
[2] Mende M, Schwarz D, Steinbach C, et al. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel[J]. Materials, 2018, 11(3):373.
[3] 李中阳, 樊向阳, 齐学斌, 等. 再生水灌溉下重金属在植物-土壤-地下水系统迁移的研究进展[J]. 中国农村水利水电, 2012(7):5-8. Li Zhongyang, Fan Xiangyang, Qi Xuebin, et al. The Impact of Renewable Wastewater on the Distribution of Heavy Metals in Plants, Soil and Underground Water[J]. Journal of Rural Water Resources and Hydropower, 2012(7):5-8.
[4] 杨悦锁, 王园园, 宋晓明,等. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报, 2017, 68(1):23-36. Yang Yuesuo, Wang Yuanyuan, Song Xiaoming, et al. Co-Transport of Colloids and Facilitated Contaminants in Subsurface Environment[J]. CIESC Journal, 2017, 68(1):23-36.
[5] Cai L, Peng S, Wu D, et al. Effect of Different-Sized Colloids on the Transport and Deposition of Titanium Dioxide Nanoparticles in Quartz Sand[J]. Environmental Pollution, 2016, 208:637-644.
[6] Kretzschmar R, Borkovec M, Grolimund D, et al. Mobile Subsurface Colloids and Their Role in Contaminant Transport[J]. Advances in Agronomy, 1999, 66(8):121-193.
[7] 张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016, 27(4):629-638. Zhang Wenjing, Zhou Jingjing, Liu Dan, et al.A Review:Research Methods that Describe the Environmental Behavior of Colloids in Groundwater[J]. Advance in Water Science, 2016, 27(4):629-638.
[8] Won J, Burns S E. Role of Immobile Kaolinite Colloids in the Transport of Heavy Metals[J]. Environmental Science & Technology, 2018, 52(5):2735-2741.
[9] 李悦铭,康春莉,张迎新,等.溶解性有机质对冻融作用下污染土壤中重金属Pb的溶出释放规律[J].吉林大学学报(地球科学版),2013,43(3):945-953. Li Yueming, Kang Chunli, Zhang Yingxin, et al. Dissolved Organic Matter Effect on Pb Leaching and Release in the Pb Contaminated Soil Dealt with Freeze-Thaw Action[J]. Journal of Jilin University (Earth Science Edition), 2013,43(3):945-953.
[10] 雷停, 孙传敏. 重金属镍的土壤污染及迁移转化[J]. 地球科学进展, 2012, 27(增刊1):359-361. Lei Ting, Sun Chuanmin. Soil Pollution and Migration of Heavy Metal Nickel[J]. Advances in Earth Science, 2012, 27(Sup.1):359-361.
[11] 许端平, 崔芳菲, 李翰良, 等. 污染土壤胶体释放特征及其对锌运移的作用[J]. 环境工程学报, 2015, 9(5):2495-2502. Xu Duanping, Cui Fangfei, Li Hanliang, et al. Releasing Characteristics of Colloids from Contaminated-Soil and Their Effect on Transportation of Zinc[J]. Chinese Journal of Environmental Engineering, 2015, 9(5):2495-2502.
[12] Fang Jing, Zhang Keke, Sun Peide, et al. Co-Transport of Pb2+ and TiO2 Nanoparticles in Repacked Homogeneous Soil Columns Under Saturation Condition:Effect of Ionic Strength and Fulvic Acid[J]. Science of the Total Environment, 2016, 571:471-478.
[13] 张珍, 金梦瑶, 孔晓霞, 等. 纳米级零价铁去除水中二价镍污染的研究[C]//环境系统科学与工程国际会议.大连:智能信息技术应用学会,2011:5. Zhang Zhen, Jin Mengyao, Kong Xiaoxia, et al. Treatment of Bivalent Nickel Ions in Water by Nano-Zero-Valent Iron[C]//International Conference on Environmental Systems Science and Engineering. Dalian:Intelligent Information Technology Application Association,2011:5.
[14] Ong D C,Pingul-Ong S M B, Kan C-C, et al. Removal of Nickel Ions from Aqueous Solutions by Manganese Dioxide Derived from Groundwater Treatment Sludge[J]. Journal of Cleaner Production, 2018, 190:443-451.
[15] El-Naggar A,Shaheen S M, Ok Y S, et al. Biochar Affects the Dissolved and Colloidal Concentrations of Cd, Cu, Ni, and Zn and Their Phytoavailability and Potential Mobility in a Mining Soil Under Dynamic Redox-Conditions[J]. Science of the Total Environment, 2018, 624:1059-1071.
[16] Fang J, Shan X Q, Wen B, et al. Stability of Titania Nanoparticles in Soil Suspensions and Transport in Saturated Homogeneous Soil Columns[J]. Environmental Pollution, 2009, 157(4):1101-1109.
[17] And S B R,Dzombak D A. Chemical Factors Influencing Colloid-Facilitated Transport of Contaminants in Porous Media[J]. Environmental Science & Technology, 1997, 31(3):656-664.
[18] 商书波. 包气带中的土壤可移动胶体及对重金属迁移影响的研究[D].长春:吉林大学, 2008. Shang Shubo. Study on the Impact of Soil Colloids on Heavy Metals Migration in Vadose Zone[D]. Changchun:Jilin Unverisity,2008.
[19] 邹献中, 徐建民, 赵安珍, 等. 离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J]. 土壤学报, 2003, 40(6):845-851. Zou Xianzhong, Xu Jianmin, Zhao Anzhen, et al. Effects of Ionic Strength and pH on Interaction Between Cu2+ and Variable Change Soils[J]. Acta Pedologica Sinica, 2003, 40(6):845-851.
[20] 刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013(7):1308-1317. Liu Guannan, Liu Xinhui. A Review on the Impact of Soil Colloids on Heavy Metal Transport[J]. Environmental Chemistry, 2013(7):1308-1317.
[21] 张柯柯. 纳米TiO2在土壤中迁移及其与Pb共迁移机制研究[D].杭州:浙江工商大学, 2015. Zhang Keke. Transport of Nano-TiO2 in Soil and the Co-Transport Mechanisms of Pb with Nano-TiO2[D]. Hangzhou:Zhejiang Gongshang University, 2015.
[22] 杨毅, 兰亚琼, 金鹏康, 等. 水环境中腐殖酸的荷电特性与聚集特性[J]. 环境工程学报, 2014, 8(4):1539-1542. Yang Yi, Lan Yaqiong, Jin Pengkang, et al. Charged Characteristics and Aggregation Properties of Humic Acid in Water Environment[J]. Chinese Journal of Environmental Engineering, 2014, 8(4):1539-1542.
[23] 牟晓英. 纳米二氧化钛在水中的特性及与腐殖酸的相互作用研究[D].哈尔滨:哈尔滨工业大学, 2011. Mu Xiaoying. Study on Titanium Dioxide Nanoparticles Charactertics in the Aquatic Environment and Interaction with Humic Acid[D]. Harbin:Harbin Institute of Technology,2011.
[24] Wang Q, Cheng T, Yang W. Influence of Mineral Colloids and Humic Substances on Uranium (VI) Transport in Water-Saturated Geologic Porous Media[J]. Journal of Contaminant Hydrology, 2014, 170:76-85.
[1] 董军, 李文德, 陈建隆, 吴玥, 鹿豪杰. 电容去离子化去除地下水中镉的影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1129-1136.
[2] 何俊, 王小琦, 颜兴, 万娟, 朱志政. 溶液和温度作用下膨润土防水毯的渗透性能[J]. 吉林大学学报(地球科学版), 2019, 49(3): 807-816.
[3] 代杰瑞, 喻超, 张明杰, 董建, 胡雪平. 淄博市区大气颗粒物重金属元素分布特征及其来源分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211.
[4] 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862.
[5] 陆继龙, 刘奇志, 王春珍, 蔡波, 郝立波, 尹业长, 赵玉岩. 二道松花江沉积物重金属特征及其潜在生态风险[J]. 吉林大学学报(地球科学版), 2018, 48(2): 566-573.
[6] 唐文龙, 孙宏伟, 刘晓阳, 王杰, 左立波, 吴兴源. 中南部非洲镍矿成矿规律及资源潜力分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 53-69.
[7] 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551.
[8] 宋志伟, 李婷, 易宏云, 邱杰, 张迪, 陈丹凤. 好氧颗粒污泥对有机污染物的吸附机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 868-873.
[9] 刘娜, 杨亚冬, Alberto Bento Charrua, 王航, 叶康, 吕春欣. 响应曲面法优化生物质炭去除水溶液中的阿特拉津[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1199-1207.
[10] 王飞宇, 冯伟平, 关晶, 贺志勇. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报(地球科学版), 2016, 46(2): 388-397.
[11] 周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元. 岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562.
[12] 赵建如, 初凤友, 金路, 杨克红, 葛倩. 珠江口西部海域表层沉积物重金属元素多尺度空间变化特征[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1772-1780.
[13] 张凤君, 贾晗, 刘佳露, 董佳新, 卢伟, 吕聪. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1515-1522.
[14] 郝立波, 田密, 赵玉岩, 陆继龙, 孙立吉, 赵新运. 吉林红旗岭主要成矿岩体辉石地球化学特征及其意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 95-105.
[15] 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!