吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (3): 1004-1015.doi: 10.13278/j.cnki.jjuese.20210381

• 地球探测与信息技术 • 上一篇    下一篇

基于DAS信号和CNN分类算法的人员运动轨迹监测方法

董旭日1,冯晅1,刘财1,田有1,李静1,王天琪1,王鑫1,衣文索2   

  1. 1.吉林大学地球探测科学与技术学院,长春130026

    2.长春理工大学光电工程学院,长春130022


  • 出版日期:2022-05-26 发布日期:2024-01-05
  • 基金资助:

    国家重点研发计划项目(2018YFC1503705);国家自然科学基金项目(42174065)


Personnel Motion Trajectory Monitoring Method Based on DAS Signal and CNN Classification Algorithm

Dong Xuri1, Feng Xuan1, Liu Cai1, Tian You1, Li Jing1, Wang Tianqi1, Wang Xin1, Yi Wensuo2   

  1. 1.  College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China

    2.  College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China


  • Online:2022-05-26 Published:2024-01-05
  • Supported by:
    Supported by the National Key R&D Program of China (2018YFC1503705) and the National Natural Science Foundation of China (42174065)

摘要:

人员运动轨迹监测目前主要依靠摄像头网络、热成像和雷达系统等方式实现,但这些方法的监测范围有限,且易受到光线、热源、遮挡物和距离的影响。针对上述问题,我们开发了一种利用分布式声学传感(distributed acoustic sensing, DAS)识取人员振动信号用于监测人员运动轨迹的新方法,能够不受光线、热源、遮挡物等环境改变的影响,实现长距离连续监测。首先,通过长短时窗比值(STA/LTA)法自动拾取DAS信号,再对拾取的信号进行分析,将其分为人员运动、重锤和噪声3类信号;然后,构建卷积神经网络(CNN),将拾取的3类信号作为CNN数据库输入到网络中学习和训练;最后,通过实际数据测试得到3类信号分类结果。结果表明,分类结果的识别准确率均达到80.00%以上。利用识别得到的信号,通过CNN分类结果可确定人员所在的光纤道,追踪人员位置,输入更新的DAS信号连续识别人员运动信号,监测人员运动轨迹;然后用单位时间内识别人员移动的通道数计算运动速率。

关键词: 人员运动轨迹监测, 分布式声学传感, 卷积神经网络, 长短时窗比值, 自动识别分类

Abstract:

At present, the monitoring methods of personnel motion trajectory mainly rely on camera networks and thermal imaging and radar systems. However, these methods have limited monitoring range and are easily affected by light, heat sources, obstructions and distance. In response to the above problems, we have developed a new method of using distributed acoustic sensing(DAS)to recognize human vibration signals to monitor personnel motion  trajectory, which can be undisturbed and unaffected by environmental changes such as light, heat sources, and obstructions over long distances. First, the DAS signals are automatically picked up by the long-to-short time window ratio (STA/LTA) method, and then the picked-up signals are analyzed and can be divided into three types: personnel motion, hammer, and noise. Further, a convolutional neural network (CNN) architecture is constructed, and the three types of signals are input into the network as a CNN database for learning and training. Finally, the results of the three types of signal classification results are obtained through the actual data test. The accuracy reaches more than 80.00%. The recognized signal by CNN classification result can be used to determine the person's fiber channel to track the position of the person, the personnel motion trajectory can be monitored by input the updated DAS signal continuously to identify the personnel motion signal, and the motion speed can be calculated by the number of personnel movement  channels  identified per unit time.

中图分类号: 

  • P631.4
[1] 刘 霞, 孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-.
[2] 张岩, 刘小秋, 李杰, 董宏丽, . 基于时频联合深度学习的地震数据重建[J]. 吉林大学学报(地球科学版), 2023, 53(1): 283-296.
[3] 李邦, 蒋川东, 王远, 田宝凤, 段清明, 尚新磊, .

基于卷积神经网络的地下水磁共振数据随机噪声压制方法 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 775-784.

[4] 李忠潭, 薛林福, 冉祥金, 李永胜, 董国强, 李玉博, 戴均豪. 基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 418-433.
[5] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!