Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (1): 214-224.doi: 10.13278/j.cnki.jjuese.201501203

Previous Articles     Next Articles

Study of the Engineering Geological Conditions and Rock Mass Stability of Heidong Large Ancient Underground Caverns

Shang Yanjun1, Yang Zhifa1, Li Lihui1, Li Tianbin2, He Wantong1   

  1. 1. Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610069, China
  • Received:2014-04-12 Published:2015-01-26

Abstract:

The favorable engineering geological conditions and the structural integrity of rock mass make the Heidong ancient man-made underground caverns in Tiantai County, Zhejiang Province a large scale subterraneous quarry ever since the Sui Dynasty. Consisting of 21 single caverns, the group caverns situated in Xieshan cover an area of 24 000 m2, and the long axis of the caverns tend towards the same direction of the strike of the major two sets of geological structural planes. The lithology of the overall quarrying area is composed of the Upper Cretaceous Tangshang Formation layer No.6 off-white vitric ignimbrite. The value of the rock mass quality index Q is 53(class I). If the concept of modern underground caverns'architectural design is held, the maximum allowable span for the caverns'secular stability should not be greater than 50 m, and the maximum span of cavern No.5 actually reaches 81 m-promises to be perhaps the greatest span of single cavern. The several geological exploratory holes excavated by the ancients in the foot of Xieshan and the large angle-small section-high bench passing technique adopted in regional fault fracture zone effectively ensure the safety and secular stability of unsupported mining in unfavorable geological bodies. By piling massive quarrying waste in the cavern, the stability of the side walls is enhanced to some extent, and besides, the disposal method is also beneficial to the environment.

Key words: Heidong, large scale ancient quarry, gouge, rock mass quality, long term stability

CLC Number: 

  • P642.3

[1] 周念清, 杨楠, 汤亚绮, 等. 基于Hoek-Brown准则确定核电工程场地岩体力学参数[J]. 吉林大学学报:地球科学版, 2013, 43(5):1517-1522. Zhou Nianqing, Yang Nan, Tang Yaqi, et al. Determination of Rockmass Mechanical Parameters of Nuclear Power Engineering Site Based on Hoek-Brown Criterion[J]. Journal of Jilin University:Earth Sciences Edition, 2013, 43(5):1517-1522.

[2] 浙江省区域地质调查大队. 区域地质调查报告:1:20万:仙居幅[R]. 北京:中科院地质资料馆, 1978:260. The Regional Geology Survey Team, Geology Bureau of Zhejiang. Chinese Geological Survey Report:1:200 000:Xianju Sheet[R]. Beijing:Geology and Earth Reference Room of the Chinese Academy of Sciences, 1978:260.

[3] 浙江省区域地质调查大队. 区域地质调查报告:1:20万:临海幅、渔山列岛幅[R]. 北京:中科院地质资料馆, 1980:245. The Regional Geology Survey Team, Geology Bureau of Zhejiang. Chinese Geological Survey Report:1:200 000:Linhai Sheet and Yushan Liedao Sheet[R]. Beijing:Geology and Earth Reference Room of the Chinese Academy of Sciences, 1980:245.

[4] 浙江省地质矿产局. 浙江省区域地质志[M]. 北京:地质出版社, 1989:688. Geology Bureau of Zhejiang. Regional Geological Survey Report of Zhejiang[M]. Beijing:Geological Publishing House, 1989:688.

[5] 张咸恭, 王思敬, 李智毅. 工程地质学概论[M]. 北京:地震出版社, 2005:102-117. Zhang Xiangong, Wang Sijing, Li Zhiyi. A Guide to Engineering Geology[M]. Beijing:Seismological Publishing House, 2005:102-117.

[6] GB50086-2001 杆喷射混凝土支护技术规范[S]. 北京:中国计划出版社, 2001. GB50086-2001 Specification for Bolt-Shotcrete Support[S]. Beijing:China Planning Press, 2001.

[7] 王思敬, 杨志法, 刘竹华. 地下工程岩体稳定性分析[M]. 北京:科学出版社, 1984. Wang Sijing, Yang Zhifa, Liu Zhuhua. Analysis of Stability of Rock Mass for Underground Engineering[M]. Beijing:Science Press, 1984.

[8] 宿白. 石窟·中国大百科全书:文物·博物馆[M]. 北京:中国大百科全书出版社, 1995:473-475. Su Bai. Stone Cavern Temple ·China Encyclopedia:Heritage and Museum[M]. Beijing:Encyclopedia of China Publishing House, 1995:473-475.

[9] Barton N, By T L, Chryssanthakis P, et al. Predicted and Measured Performance of the 62 m Span Norwegian Olympic Ice Hockey Cavern at Gjøvik[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1994, 31:617-641.

[10] Barton N, Lien R, Lunde J. Engineering Cla-ssification of Rock Masses for the Design of Tunnel Support[J]. Rock Mechanics, 1974, 6:189-236.

[11] Yang Zhifa, Shang Yanjun, Li Lihui, et al. Long-Term Stability of Large Span Cavern at the 1 400-Year Heidong Quarry[J]. Episodes, 2013, 36(1):39-46.

[12] CECS239 2008岩石与岩体鉴定和描述标准[S]. 北京:中国计划出版社, 2008. CECS239 2008 Standard for Identification and De-scription of Rock & Rock Mass[S]. Beijing:China Planning Press, 2008.

[13] 杨志法, 李丽慧, 潘炜. 关于大型古地下工程若干问题的讨论[J].科学技术与工程, 2003, 3(5):464-466. Yang Zhifa, Li Lihui, Pan Wei. Discussions About Large-Scale Ancient Underground Engineerings[J]. Science Technology and Engineering, 2003, 3(5):464-466.

[14] 张中俭. 中国古代大面积薄石板劈裂技术及其岩石力学原理[R]. 北京:中科院地质与地球物理研究所, 2012. Zhang Zhongjian. Technique of Splitting Large-Area Thin Stone Plate of Ancient Chinese and Its Rock Mechanics Principles[R]. Beijing:Institute of Geology and Geophysics, Chinese Academy of Sciences, 2012.

Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!