Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (2): 655-662.doi: 10.13278/j.cnki.jjuese.201502307

Previous Articles    

Geoid Refinement Based on Land Gravity and GPS/Leveling Data in Xingcheng Geophysical Survey Test Area

Wu Qiong1, Li Shuwen1,2, Li Hongqing1, Zhen Jianing1, Li Lei1,3, Yang Guodong1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Ji'nan Institute of Survey and Investigation, Ji'nan 250013, China;
    3. Kunming Engineering Corporation Limited, PowerChina, Kunming 650051, China
  • Received:2014-04-09 Published:2015-03-26

Abstract:

The local geoid fluctuation is the major problem for the application of GPS survey. Algorithm for refining local geoid includes gravity method, GPS leveling method, and hybrid method. Hybrid method is widely applied due to its high precision and resolution, while high precision earth gravity model is the key for the hybrid method. The precision and resolution of EGM2008 earth gravity model is much higher than any gravity model in China. The study on its application for the refinement of local geoid has an important practical significance. We refined the geoid of the Xingcheng geophysical survey test area of Jilin University by means of hybrid method model (HMM), with using land gravity data, EGM2008, and GPS/leveling. The precision between the HMM and the model is refined by geometric method without comparision with the land gravity data(GMM). Both of the applicability of this method and EGM2008 are analyzed. The results indicate that the maximum precision of HMM in the test area is 1.2 cm with a minimum error distribution interval, and both of the precision and reliability of HMM are higher than the GMM in varied topography. High density gravity data in a much plane area may produce a high frequency disturb to EGM2008 because of its high precision, and this disturb may decrease the precision of EGM2008, which means that the spatial distribution of gravity data survey needs to be emphasized. The geoid refinement method reported in this article may be much more suitable for a complex topographic area.

Key words: EGM2008, hybrid method, geoid refinement, geophysical survey

CLC Number: 

  • P223

[1] SY/T5171-2011陆上石油物探测量规范[S].北京:石油工业出版社, 2011. SY/T5171-2011 Specifications of Survey for Petroleum Geophysical Prospecting on Land[S].Beijing:Petroleum Industry Press, 2011.

[2] DZT 0171-1997 大比例尺重力勘查规范[S].北京:中国标准出版社, 1997. DZT 0171-1997 Specifications of Large Scale Gravitational Perambulation[S].Beijing:China Standard Press, 1997.

[3] 张正禄, 邓勇, 罗长林, 等. 利用GPS精化区域似大地水准面[J].大地测量与地球动力学, 2006, 26(4):14-17. Zhang Zhenglu, Deng Yong, Luo Changlin, et al. Refining Local Quasi Geoid with GPS[J].Journal of Geodesy and Geodynamics, 2006, 26(4):14-17.

[4] 李征航, 黄劲松.GPS测量与数据处理[M]. 武汉:武汉大学出版社, 2005. Li Zhenghang, Huang Jinsong. GPS Surveying and Data Processing[M].Wuhan:Wuhan University Press, 2005.

[5] 马新莹, 何志堂, 于丹, 等. 不同大地水准面精化方法的试算与分析[J].测绘技术装备, 2009, 11(1):9-12. Ma Xinying, He Zhitang, Yu Dan, et al. Calculation and Analysis of Different Methods for Refine Geoid Model[J].Geomatics Technology and Equipment, 2009, 11(1):9-12.

[6] Pavlis N K, Holmes S A, Kenyon S C, et al.An Earth Gravitational Model to Degree 2160:EGM2008[C]//2008 General Assembly of the European Geosciences Union. Vienna:Apill, 2008.

[7] 章传银, 郭春喜, 陈俊勇, 等. EGM2008地球重力场模型在中国大陆适用性分析[J].测绘学报, 2009, 38(4):283-289. Zhang Chuanyin, Guo Chunxi, Chen Junyong, et al. EGM2008 and Its Application Analysis in Chinese Mainland[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):283-289.

[8] GBT 23709-2009区域似大地水准面精化基本技术规定[S]. 北京:中国标准出版社, 2009. GBT 23709-2009 Basic Specifications for Region Quasi-Geoid Determination[S]. Beijing:China Standard Press, 2009.

[9] Bae T S, Lee J, Kwon J H, et al. Update of the Precision Geoid Determination in Korea[J].Geophysical Prospecting, 2012, 60:555-571.

[10] Tóth G Y, S?ucs E. On the Determination of a New Combined EGM2008 Based Quasi-Geoid for Hungary[J].Acta Geodaetica et Geophysica Hungarica, 2011, 46(4):417-430.

[11] 宁津生, 罗志才, 李建成.我国省市级大地水准面精化的现状及技术模式[J].大地测量与地球动力学, 2004, 24(1):4-8. Ning Jinsheng, Luo Zhicai, Li Jiancheng. Present Situations and Technical Modes for Refining Provincial(Municipal) Geoid in China[J]. Journal of Geodesy and Geodynamics, 2004, 24(1):4-8.

[12] 宁津生, 罗志才, 杨沾吉, 等.深圳市1 km高分辨率厘米级高精度大地水准面的确定[J].测绘学报, 2003, 32(2):102-107. Ning Jinsheng, Luo Zhicai, Yang Zhanji, et al. Determination of Shenzhen Geoid with 1 km Resolution and Centimeter Accuracy[J].Acta Geodaetica et Cartographica Sinca, 2003, 32(2):102-107.

[13] Hirt C, Featherstone W E, Marti U. Combining EGM2008 and SRTM/DTM2006.0 Residual Terrain Model Data to Improve Quasi-Geoid Computations in Mountainous Areas Devoid of Gravity Data[J].Journal of Geodesy, 2010, 84(9):557-567.

[14] Chen Yongqi, Luo Zhicai. A Hybrid Method to Determine a Local Geoid Model-Case Study[J].Earth Planets Space, 2004, 56:419-427.

[15] 海斯卡涅W A, 莫里斯H.物理大地测量学[M]. 卢福康, 胡国理, 译.北京:测绘出版社, 1967. Heiskanen W A, Moritz H. Physical Geoolesy[M]. Translated by Lu Fukang, Hu Guoli. Beijing:Surveying and Mapping Press, 1967.

[16] 管泽霖, 宁津生. 地球形状及外部重力场:上册[M]. 北京:测绘出版社, 1981. Guan Zelin, Ning Jinsheng. The Shape of the Earth and Its External Gravity Field:The First Volume[M].Beijing:Surveying and Mapping Press, 1981.

[17] 李建成, 陈俊勇, 宁津生, 等.地球重力场逼近理论与中国 2000 似大地水准面的确定[M]. 武汉:武汉大学出版社, 2003. Li Jiancheng, Chen Junyong, Ning Jinsheng, et al. The Theory of Approaching Earth Gravity Field and Evaluation of Chinese 2000 Qusi-Geoid[M]. Wuhan:Wuhan University Press, 2003.

[18] 李建成, 畅毅, 董兰生, 等.陕甘宁盆地大地水准面精化问题研究[J].物探装备, 1999, 9(4):6-12. LI Jiancheng, Chang Yi, Dong Lansheng, et al. Optimized Geoid Determination in Shan-Gan-Ning Basin[J]. Equipment for Geophysical Prospecting, 1999, 9(4):6-12.

[19] 李建成.最新中国陆地数字高程基准模型:重力似大地水准面 CNGG2011[J].测绘学报, 2012, 41(5):651-660, 699. Li Jiancheng. The Recent Chinese Terrestrial Digital Height Datum Model:Gravimetric Quasi-Geoid CNGG2011[J].Acta Geodaetica et Cartographica Sinica, 2012, 41(5):651-660, 699.

[20] 晁定波.关于 Stokes 公式的球面卷积和平面卷积的注记[J].武汉大学学报:信息科学版, 2004, 28(6):651-654. Chao Dingbo. A Note on Stokes Formula in the Form of Spherical and Planar Convolution[J]. Geomatics and Information Science of Wuhan University, 2004, 28(6):651-654.

[21] 李树文, 吴琼, 李宏卿, 等.EGM2008重力场模型在兴城物探测量中的应用[J].世界地质2014, 33(1):209-214. Li Shuwen, Wu Qiong, Li Hongqing, et al. An Application of EGM2008 for Geophysical Prospecting Survey in Xingcheng[J].Global Geology, 2014, 33(1):209-214.

[22] 郭东美, 许厚泽.应用GPS水准与重力数据联合解算大地水准面[J].武汉大学学报:信息科学版, 2011, 36(5):621-624. Guo Dongmei, Xu Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):621-624.

[23] Prutkin I, Klees R. On the Non-Uniqueness of Local Quasi-Geoids Computed from Terrestrial Gravity Anomalies[J].Journal of Geodesy, 2008, 82(3):147-156.

[24] 黄大年, 于平, 底青云, 等.地球深部探测关键技术装备研发现状及趋势[J].吉林大学学报:地球科学版, 2012, 42(5):1485-1496. Huang Danian, Yu Ping, Di Qingyun, et al. Development of Key Instruments and Technologies of Deep Exploration Today and Tomorrow[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(5):1485-1496.

[25] GB/T18314-2009 全球定位系统(GPS)测量规范[S].北京:中国标准出版社, 2009. GB/T18314-2009 Specifications for Global Position System (GPS) Surveys[S]. Beijing:China Standard Press, 2009.

[26] GB/T12897-2006国家一、二等水准测量规范[S].北京:中国标准出版社, 2006. GB/T12897-2006 Specifications for the First and Second Order Leveling[S]. Beijing:China Standard Press, 2006.

[27] Marti U.Comparison of High Precision Geoid Models in Switzerland[M]//Jekeli C. Gravity, Geoid and Space Missions.:Springer, 2004:377-382.

[28] Featherstone W E. On the Use of the Geoid in Geophysics:A Case Study Over the North-West Shelf of Australia[J]. Exploration Geophysics, 1997, 28(1):52-57.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!