Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (5): 1530-1538.doi: 10.13278/j.cnki.jjuese.201505302
Previous Articles Next Articles
Wu Juan1,2, Chen Xiaohong1,2, Bai Min1,2
CLC Number:
[1] Zhou J,Birdus S,Hung B,et al.Compensating Attenuation Due to Shallow Gas Through Q Tomography and Q-PSDM: A Case Study in Brazil[C]//81st Annual International Meeting. San Antonio: SEG, 2011: 3332-3336.[2] Bickel S H, Natarajan R R. Plane-Wave Q Deconvolution[J]. Geophysics, 1985, 50(9): 1426-1439.[3] Hargreaves N D, Calvert A J. Inverse Q Filtering by Fourier Transform[J]. Geophysics, 1991, 56(4): 519-527.[4] Wang Y H.Inverse Q Filter for Seismic Resolution Enhancement[J]. Geophysics, 2006, 71(3): 51-60.[5] 冯晅, 张瑾, 刘财, 等. 基于改进的 Kolsky 模型波场延拓公式的纵波Q值, 横波Q值估计[J]. 吉林大学学报:地球科学版, 2014, 44(1): 359-368. Feng Xuan, Zhang Jin, Liu Cai, et al. Estimation of P-and S-Waves Quality Factors Based on the Formula of the Wave-Field Continuation in Modified Kolsky Model[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(1): 359-368.[6] Zhang C H, Ulrych T J. Refocusing Migrated Seismic Images in Absorptive Media[J]. Geophysics, 2010, 75(3): 103-110.[7] Mittet R, Sollie R, Hokstad K. Prestack Depth Migration with Compensation for Absorption and Dispersion[J]. Geophysics, 1995, 60 (5): 1485-1494.[8] Zhang J, Wapenaar K. Wavefield Extrapolation and Prestack Depth Migration in Anelastic Inhomogeneous Media[J]. Geophysical Prospecting, 2002, 50(10): 629-643.[9] Mittet R. A Simple Design Procedure for Depth Extrapolation Operators that Compensate for Absorption and Dispersion[J]. Geophysics, 2007, 72(2): 105-112.[10] Zhang J, Wu J, Li X. Compensation for Absorption and Dispersion in Prestack Migration: An Effective Q Approach[J]. Geophysics, 2013, 78(1): 1-14.[11] Hill N R. Gaussian Beam Migration[J]. Geophysics, 1990, 55: 1416-1428.[12] Hill N R. Prestack Gaussian-Beam Depth Migration[J]. Geophysics, 2001, 66: 1240-1250.[13] Hale D. Migration by the Kirchhoff, Slant Stack and Gaussian Beam Methods[R]. Golden: Colorado School of Mines Center for Wave Phenomena, 1992.[14] Hale D. Computational Aspects of Gaussian Beam Migration[R]. Golden: Colorado School of Mines Center for Wave Phenomena, 1992.[15] Gray S H. Gaussian Beam Migration of Common-Shot Records[J]. Geophysics, 2005, 70(4): 71-77.[16] Gray S H, Bleistein N. True-Amplitude Gaussian-Beam Migration[J]. Geophysics, 2009, 74(2): 11-23.[17] Popov M M, Semtchenok N M, Popov P M, et al. Depth Migration by the Gaussian Beam Summation Method[J]. Geophysics, 2010, 75(2): 81-93.[18] Cerveny V. A Note on Dynamic Ray Tracing in Ray-Centered Coordinates in Anisotropic Inhomogeneous Media[J]. Studia Geophysica et Geodaetica, 2007, 51: 411-22.[19] 岳玉波. 复杂介质高斯束偏移成像方法研究[D]. 青岛: 中国石油大学, 2011. Yue Yubo. Study on Gaussian Beam Migration Methods in Complex Medium[D]. Qingdao: China University of Petroleum, 2011.[20] Xie Y, Notfors C, Sun J, et al. 3D Prestack Beam Migration with Compensation for Frequency Depen-dent Absorption and Dispersion[C]//72nd EAGE Conference & Exhibition Incorporating SPE EUROPEC. Barcelona: [s. n.], 2010.[21] Keers H, Vasco D W, Johnson L R. Viscoacoustic Crosswell Imaging Using Asymptotic Waveforms[J]. Geophysics, 2001, 66: 861-870.[22] Zhu T Y, Harris J M, Biondi B. Q-Compensated Reverse-Time Migration[J]. Geophysics, 2014, 79(3): 77-87. |
[1] | ZHOU Hui, XIE Chun-lin, WANG Shang-xu, LI Guo-fa. Prestack Depth Migration for Geological Structures with Complicated Surface [J]. J4, 2012, 42(1): 262-268. |
[2] | PAN Hong-xun,FANG Wu-bao. Parallel Computing Strategy Based on PC Cluster for Wave Equation Prestack Depth Migration [J]. J4, 2008, 38(4): 708-0712. |
|