Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (4): 1199-1207.doi: 10.13278/j.cnki.jjuese.201604206
Previous Articles Next Articles
Liu Na, Yang Yadong, Alberto Bento Charrua, Wang Hang, Ye Kang, Lü Chunxin
CLC Number:
[1] Basfar A A, Mohamed K A, Al-Abduly A J, et al. Radiolytic Degradation of Atrazine Aqueous Solution Containing Humic Substances[J]. Ecotoxicol Environ Saf,2009, 72(3): 948-953.[2] Gao Y, Fang J, Zhang J, et al. The Impact of the Herbicide Atrazine on Growth and Photosynthesis of Seagrass, Zostera Marina (L), Seedlings[J]. Mar Pollut Bull, 2011, 62(8): 1628-1631.[3] Lasserre J P, Fack F, Revets D, et al. Effects of the Endocrine Disruptors Atrazine and PCB 153 on the Protein Expression of MCF-7 Human Cells[J]. J Proteome Res, 2009, 8: 5485-5496.[4] DeNoyelles F, Kettle W D, Sinn D E. The Responses of Plankton Communities in Experimental Ponds to Atrazine, the Most Heavily Used Pesticide in the United States[J]. Ecology, 1982, 63(5): 1285-1293.[5] Davies P E, Cook L S J, Goenarso D. Sublethal Responses to Pesticides of Several Species of Australian Freshwater Fish and Crustaceans and Rainbow Trout[J]. Environ Toxicol Chem, 1994, 13(8):1341-1354.[6] 李萃义,焦晓娟.洋河下游农灌区农作物受灾与水质污染的关系[J].中国环境监测,1996,12(4):49-51. Li Cuiyi, Jiao Xiaojuan. Relation of Plants Injury in Yang River's Irrigation with Water Pollution[J]. Environmental Monitoring in China, 1996,12(4):49-51.[7] 王立仁,赵明宇.阿特拉津在农田灌溉水及土壤中的残留分析方法及影响的研究[J].农业环境保护,2000,19(2):111-113. Wang Liren, Zhao Mingyu. An Analytical Method for Determination of Atrazine Residue in Irrigation Water and Soil, and Its Potential Effects[J]. Agriculture Environmental Protection ,2000, 19 (2): 111-113.[8] 任晋,蒋可,周怀东. 官厅水库水中阿特拉津残留的分析及污染来源[J]. 环境科学,2002,23(1):126-128. Ren Jin, Jang Ke, Zhou Huaidong. The Concentraion and Source of Atrazine Rdsidue in Water of Guanting Reservoir[J]. Enviromental Science, 2002,23(1): 126-128.[9] Khan J A, He X, Khan H M, et al. Oxidative Degradation of Atrazine in Aqueous Solution by UV/H2O2/Fe2+, UV//Fe2+ and UV//Fe2+ Processes: A Comparative Study[J]. Chem Eng J, 2013, 218: 376-383.[10] Benner J, Helbling D E, Kohler H P, et al. Is Biological Treatment a Viable Alternative for Micropollutant Removal in Drinking Water Treatment Processes?[J]. Water Res, 2013, 47(16): 5955-5976.[11] Rojas R, Morillo J, Usero J, et al. Adsorption Study of Low-Cost and Locally Available Organic Substances and a Soil to Remove Pesticides from Aqueous Solutions[J]. J Hydrol, 2015, 520: 461-472.[12] Ezazi N Z. Biofunctionalization of Zirconia Based Materials by Immobilization of Alp in Tissue Enginee-ring Applications[D]. Tampere :Tampere University of Technology,2014.[13] Wang S, Wang K, Dai C, et al. Adsorption of Pb2+ on Amino-Functionalized Core-Shell Magnetic Mesoporous SBA-15 Silica Composite[J]. Chem Eng J, 2015, 262: 897-903.[14] Srinivasan P, Sarmah A K. Characterisation of Agricultural Waste-Derived Biochars and Their Sorption Potential for Sulfamethoxazole in Pasture Soil: A Spectroscopic Investigation[J]. Sci Total Environ, 2015, 502: 471-480.[15] 曹美珠,潘丽萍,张超兰,等.四种生物质炭的表面特性及其对水溶液中镉-阿特拉津的吸附性能研究[J].农业环境科学学报,2014, 33(12): 2350-2358. Cao Meizhu, Pan Liping, Zhang Chaolan, et al. Surface Characteristics of Four Biochars and Their Adsorption of Cd and Atrazine in Aqueous Solution[J]. Journal of Agro-Environment Science, 2014, 33(12): 2350-2358.[16] 武玉,徐刚,吕迎春等.生物炭对土壤理化性质影响的研究进展[J].地球科学进展,2014,29(1):68-79. Wu Yu, Xu Gang, Lü Yingchun, et al. Effects of Biochar Amendment on Soil Physical and Chemical Properties: Current Status and Knowledge Gaps[J]. Advancesin Earth Science,2014,29(1): 68-79.[17] 杨放,李心清,王兵,等. 生物炭在农业增产和污染治理中的应用[J].地球与环境,2012,40(1):100-107. Yang Fang, Li Xinqing, Wang Bing, et al. The Application of Biochar to Improving Agricultural Production and Pollution Abatement[J]. Earth and Envirnment,2012,40(1):100-107.[18] Anupam K, Dutta S, Bhattacharjee C, et al. Adsorptive Removal of Chromium (VI) from Aqueous Solution over Powdered Activated Carbon: Optimisation Through Response Surface Methodology[J]. Chem Eng J, 2011, 173(1): 135-143.[19] Cao J, Wu Y, Jin Y, et al. Response Surface Methodology Approach for Optimization of the Removal of Chromium(VI) by NH2-MCM-41[J]. J Taiwan Inst Chem Eng, 2014, 45(3): 860-868.[20] Zhang Y, Pan B. Modeling Batch and Column Phosphate Removal by Hydrated Ferric Oxide-Based Nanocomposite Using Response Surface Methodology and Artificial Neural Network[J]. Chem Eng J, 2014, 249: 111-120.[21] Savasari M, Emadi M, Bahmanyar M A, et al. Optimization of Cd (II) Removal from Aqueous Solution by Ascorbic Acid-Stabilized Zero Valent Iron Nanoparticles Using Response Surface Methodology[J]. J Industr Chem Eng, 2015, 21: 1403-1409.[22] Wu Y, Zhou S, Qin F, et al. Modeling Physical and Oxidative Removal Properties of Fenton Process for Treatment of Landfill Leachate Using Response Surface Methodology (RSM)[J]. J Hazard Mater, 2010, 180(1/2/3): 456-465.[23] Liu N, Charrua A B, Weng C H, et al. Characterization of Biochars Derived from Agriculture Wastes and Their Adsorptive Removal of Atrazine from Aqueous Solution: A Cmparative Study[J]. Bioresource Technology, 2015, 198: 55-62.[24] Srivastava V, Weng C H, Singh V K, et al. Adsorption of Nickel Ions from Aqueous Solutions by Nano Alumina: Kinetic, Mass Transfer, and Equilibrium Studies[J]. J Chem Eng Data, 2011, 56(4): 1414-1422.[25] Kasiri M B, Khataee A R. Removal of Organic Dyes by UV/H2O2 Process: Nodelling and Optimization[J]. Environmental Technology, 2012, 33(12): 1417-1425.[26] Khataee A R.Optimization of UV-Promoted Peroxydisulphate Oxidation of CI Basic Blue 3 Using Response Surface Methodology[J]. Environmental Technology, 2010, 31(1): 73-86.[27] Zhao X, Ouyang W, Hao F, et al. Properties Comparison of Biochars from Corn Straw with Different Pretreatment and Sorption Behaviour of Atrazine[J]. Bioresour Technol, 2013, 147: 338-344.[28] Zheng W, Guo M, Chow T, et al. Sorption Properties of Greenwaste Biochar for Two Triazine Pesticides[J]. J Hazard Mater, 2010, 181(1/2/3): 121-126.[29] Chun Y, Sheng G, Chiou C T, et al. Compositions and Sorptive Properties of Crop Residue-Derived Chars[J]. Environmental Science &Technology, 2004, 38(17): 4649-4655.[30] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review[J]. Chemosphere, 2014, 99: 19-33.[31] Zhang P, Sun H, Yu L, et al. Adsorption and Catalytic Hydrolysis of Carbaryl and Atrazine on Pig Manure-Derived Biochars: Impact of Structural Properties of Biochars[J]. J Hazard Mater, 2013, 244/245: 217-224.[32] Ji L, Wan Y, Zheng S, et al. Adsorption of Tetracycline and Sulfamethoxazole on Crop Residue-Derived Ashes: Implication for the Relative Importance of Black Carbon to Soil Sorption[J].Environ Sci Technol, 2011, 45(13): 5580-5586.[33] Carrier M, Hardie A G, Uras U, et al. Production of Char from Vacuum Pyrolysis of South-African Sugar Cane Bagasse and Its Characterization as Activated Carbon and Biochar[J]. Journal of Analytical and Applied Pyrolysis, 2012, 96: 24-32.[34] Ates F, Un U T. Production of Char from Hornbeam Sawdust and Its Performance Evaluation in the Dye Removal[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 159-166.[35] Alberto Bento Charrua,王航,吕春欣,等.不同温度下松木生物质炭对阿特拉津的吸附性能研究[J]. 生态环境学报,2015,24(3):505-510. Alberto Bento Charrua, Wang Hang, Lü Chunxin,et al. Adsorption Properties of Pinus Derived Biochar for Atrazine at Different Temperature[J]. Ecology and Environmental Sciences, 2015, 24(3): 505-510.[36] Azargohar R, Nanda S, Kozinski J A, et al. Effects of Temperature on the Physicochemical Characteristics of Fast Pyrolysis Bio-Chars Derived from Cana-dian Waste Biomass[J]. Fuel, 2014, 125: 90-100.[37] Zielke U, Huttinger K J, Hoffman W P. Surface-Oxydazed Carbon Fibers: I:Surface Struture and Chemistry[J]. Carbon , 1996,34(8): 983-998.[38] LeCroy C, Masiello C A, Rudgers J A, et al. Nitrogen, Biochar, and Mycorrhizae: Ateration of the Symbiosis and Oxidation of the Char Surface[J]. Soil Biol Biochem, 2013, 58: 248-254.[39] 孟冠华,李爱民,张全兴.活性炭的表面含氧官能团及其对吸附影响的研究进展[J]. 离子交换与吸附,2007,23(1):88-94. Meng Guanhua, Li Aimin, Zhang Quanxing, Studies on the Oxygen-Containing Groups of Activated Carbon and Their Effects on the Adsoption Character[J]. Ion Exchange and Adsorption, 2007,23(1): 88-94.[40] Chia C H, Gong B, Joseph S D, et al. Imaging of Mineral-Enriched Biochar by FTIR, Raman and SEM-EDX[J]. Vibrational Spectroscopy, 2012, 62: 248-257.[41] Zhang G, Zhang Q, Sun K, et al. Sorption of Simazine to Corn Straw Biochars Pepared at Different PyrolyticTemperatures[J].Environmental Pollution, 2012, 159: 2594-2601.[42] Zhang P, Sun H, Yu L, et al. Adsorption and Catalytic Hydrolysis of Carbaryl and Atrazine on Pig Manure-Derived Biochars: Impact of Structural Properties of Biochars[J]. Journal of Hazardous Materials, 2013, 244/245: 217-224.[43] Weng C H, Lin Y T, Hong D Y, et al. Effective Removal of Copper Ions from Aqueous Solution Using Base Treated Black Tea Waste[J]. Ecological Engineering, 2014, 67: 127-133. |
[1] | Piao Yunxian, Yao Lan, He Lingzhi, Zhang Yu. Rapid Detection of Microcystin-LR Based on Green Biotemplated Electrode [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1217-1223. |
[2] | Wang Sheng, Feng Xiang, Li Bing, Guo Lin, Cao Kun, Liu Peng. Removal of Hexavalent Chromium from Simulated Groundwater by Variety of Iron-Modified and Unmodified Biochars [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 247-255. |
[3] | Zou Donglei, Li Tingting, Gao Mengwei, Qian Ning, Zhang Gaoruiyang, Dong Shuangshi. Preparation and Optimization of the Photocatalytic Materials Under Visible Light with Response Surface Methodology [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1833-1838. |
[4] | Liu Na, Wang Liu, Qiu Hua, Alberto Bento Charrua, Wang Hang, Wang Rui. Biochar Catalyzed Persulfate Decoloration of Azo Dye Acid Orange 7 [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 2000-2009. |
[5] | Li Yu, Wang Meng, Zhang Chen,Gao Qian. Composite Contamination Effects About Atrazine with a Variety of Pollutants Based on Fractional Factorial Design and Best Subset Regression [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1595-1602. |
[6] | BI Hai-Tao, ZHANG Lan-Ying, LIU Na, YANG Guo-jun, XU Guo-xin, SHU Bo-lin. Improvement of PVA-H3BO3 Immobilization Method with Inorganic Materials [J]. J4, 2011, 41(1): 241-246. |
[7] | LI Yu, LI Juan, GAO Qian, WANG Ao. Effect of Coexistent Cd-Cu on Atrazine Adsorption onto Main Components in Sediments(Surface Coatings) [J]. J4, 2010, 40(6): 1435-1440. |
[8] | LIU Na, BI Hai-tao, LIN He-jun, JI Ke-ning, ZHENG Song-zhi. Isolation of Atrazine Degrading Low Temperature Bacteria and Researching of Atrazine Biodegradation [J]. J4, 2009, 39(5): 893-898. |
[9] | LIU Hong, ZHANG Lan-ying, LIU Na, LIU Peng. Effect of Biodegradation of Atrazine in the Waterbody by Immobilized Microorganism in Low Temperature [J]. J4, 2008, 38(6): 1027-1031. |