Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (2): 548-558.doi: 10.13278/j.cnki.jjuese.20170224

Previous Articles     Next Articles

Geochemical Anomalies of Arsenic and Its Speciation in Daggyai Geothermal Springs, Tibet

Yan Ketao, Guo Qinghai, Liu Mingliang   

  1. State Key Laboratory of Biogeology and Environmental Geology/School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
  • Received:2017-09-05 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Natural Science Foundation of China(41572335,41772370)

Abstract: Daggyai geothermal system in Tibet includes the biggest geyser in mainland China. Arsenic, as one of the most harmful substances, commonly exists in geothermal water, and the highest arsenic concentration detected in Daggyai geothermal springs reaches 9.75 mg/L, unneglectable potential arsenic pollution in shallow groundwater and rivers should be noticed. Thioarsenic usually exists as the dominant species of arsenic in sulfide-rich thermal springs;however there are few related studies in China. We focused on Daggyai geothermal system, and analyzed the chemical components of the geothermal spring samples. Thioarsenic species in each sample were calculated by using the hydro-geothermal simulation software PHREEQC. The results are as follows:Arsenic in Daggyai geothermal water consists of arsenate, arsenite, and thioarsenic, among which the arsenate and arsenite are the main species. There are interchanges between arsenate and arsenite when pH changes. The descending order of thioarsenic species in terms of their average ratio is monothioarsenate, trithioarsenate, ditthioarsenate, monothioarsenite and tetrathioarsenate. The proportion of thioarsenic to total arsenic concentration is mainly controlled by sulfide concentration, pH and Eh in geothermal water. High concentration of sulfide can promote the process of arsenic changing into thioarsenic, and strong reducing environment is required for the existence of thioarsenic. Moreover, the percentage of thioarsenic seems to have a positive correlation with pH value.

Key words: geothermal spring, thioarsenic, Daggyai geothermal system, geochemistry

CLC Number: 

  • X142
[1] 孙贵范.我国地方性砷中毒研究进展[J].环境与健康杂志,2009,26(12):1035-1036. Sun Guifan. Research Progress of Endemic Arsenism in China[J]. Journal of Environment and Health,2009,26(12):1035-1036.
[2] Craigmile P F,Calder C A,Li H,et al.Hierarchical Model Building,Fitting,and Checking:A Behind-the-Scenes Look at a Bayesian Analysis of Arsenic Exposure Pathways[J]. Bayesian Analysis,2009,4(1):1-35.
[3] Figueira R,Sérgio C,Lopes J L,et al.Detection of Exposition Risk to Arsenic in Portugal Assessed by Air Deposition in Biomonitors and Water Contamination[J]. Int J Hyg Environ Health,2007,210(3/4):393-397.
[4] Whanger P D,Weswig P H,Stoner J C.Arsenic Levels in Oregon Waters[J]. Environ Health Perspect,1977,19:139-143.
[5] Subramanian K S,Kosnett M J.Human Exposures to Arsenic from Consumption of Well Water in West Bengal,India[J]. Int J Occup Environ Health,1998,4(4):217-230.
[6] Anawar H M.Arsenic Poisoning in Groundwater:Health Risk and Geochemical Sources in Bangladesh[J].Environment International,2002,27(7):597-604.
[7] Das D,Chatterjee A,Mandal B K,et al.Arsenic in Ground Water in Six Districts of West Bengal,India:The Biggest Arsenic Calamity in The World:Part 2:Arsenic Concentration in Drinking Water,Hair,Nails,Urine,Skin-Scale and Liver Tissue (Biopsy) of the Affected People[J].Analyst,1995,120(3):917-24.
[8] 金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查:总报告[J].卫生研究,2003,32(6):519-540. Jin Yinlong,Liang Chaoke,He Gongli,et al. Study on Distribution of Endemic Arsenism in China[J]. Journal of Hygiene Research,2003,32(6):519-540.
[9] 卞建民,查恩爽,汤洁,等.吉林西部砷中毒区高砷地下水反向地球化学模拟[J].吉林大学学报(地球科学版),2010,40(5):1098-1103. Bian Jianmin,Cha Enshuang,Tang Jie,et al.Inverse Geochemical Modeling of Arsenic Groundwater at Arseniasis Area in the Western of Jilin Province[J].Journal of Jilin University (Earth Science Edition),2010,40(5):1098-1103.
[10] 赵娟,李育松,卞建民,等.吉林西部地区高砷地下水砷的阈值分析及风险评价[J].吉林大学学报(地球科学版),2013,43(1):251-258. Zhao Juan,Li Yusong,Bian Jianmin,et al. Threshold Analysis and Health Risk Assessment of Arsenic in Groundwater in Western Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2013,43(1):251-258.
[11] Cortecci G,Boschetti T,Mussi M,et al.New Chemical and Original Isotopic Data on Waters from El Tatio Geothermal Field,Northern Chile[J].Geochemical Journal,2015,39(6):547-571.
[12] Khorasanipour M,Esmaeilzadeh E.Geogenic Arsenic Contamination in the Kerman Cenozoic Magmatic Arc,Kerman,Iran:Implications for the Source Identification and Regional Analysis[J].Applied Geochemistry,2015,63:610-622.
[13] Birkle P,Bundschuh J,Sracek O,et al. Mechanisms of Arsenic Enrichment in Geothermal and Petroleum Reservoirs Fluids in Mexico[J].Water Research,2010,44(19):5605-5617.
[14] Arnold Y P,Cabassi J,Tassi F,et al.Fluid Geochemistry of a Deep-Seated Geothermal Resource in The Puna Plateau (Jujuy Province,Argentina)[J].Journal of Volcanology & Geothermal Research,2017,338:121-134.
[15] Kaasalainen H,Stefánsson A. The Chemistry of Trace Elements in Surface Geothermal Waters and Steam,Iceland[J]. Chemical Geology,2012,330/331:60-85.
[16] Smedley P L,Kinniburgh D G.A Review of the Source,Behaviour and Distribution of Arsenic in Natural Waters[J].Applied Geochemistry,2002,17(5):517-568.
[17] 丁爱中,杨双喜,张宏达.地下水砷污染分析[J].吉林大学学报(地球科学版),2007,37(2):319-325. Ding Aizhong,Yang Shuangxi,Zhang Hongda.Analysis of Groundwater Arsenic Pollution[J]. Journal of Jilin University (Earth Science Edition),2007,37(2):319-325.
[18] Bostick B C,Fendorf S,Brown G E. In Situ Analysis of Thioarsenite Complexes in Neutral to Alkaline Arsenic Sulphide Solutions[J].Mineralogical Magazine,2005,69(5):781-795.
[19] Helz G R,Tossell J A.Thermodynamic Model for Arsenic Speciation in Sulfidic Waters:A Novel Use of Ab Initio,Computations[J].Geochimica Et Cosmochimica Acta,2008,72(18):4457-4468.
[20] Parkhurst D L.User's guide to PHREEQC:Version 2:A Computer Program for Speciation,Batch-Reaction,One-Dimensional Transport,and Inverse Geochemical Calculations[R].Water Resources Investigations Report,1999:99-4259.
[21] Zakaznova-Herzog V P,Seward T M.A Spectrophotometric Study of the Formation and Deprotonation of Thioarsenite Species in Aqueous Solution at 22℃[J].Geochimica Et Cosmochimica Acta,2012,83(1):48-60.
[22] Thilo E,Hertzog K,Winkler A.Vber Vorgänge bei der Bildung des Arsen(V)-Sulfids Beim Ansäuern von Tetrathioarsenatlösungen[J].Zeitschrift Für Anorganische Und Allgemeine Chemie,1970,373(2):111-121.
[23] Guo Q,Planer-Friedrich B,Liu M,et al.Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System,Tengchong Volcanic Region,China[J]. Chemical Geology,2017,453:12-20.
[24] 郭清海,刘明亮,李洁祥.腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J].地球科学,2017,42(2):286-297. Guo Qinghai,Liu Mingliang,Li Jiexiang.Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses[J]. Earth Science,2017,42(2):286-297.
[25] 庄亚芹,郭清海,刘明亮,等.高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例[J].地球科学,2016,41(9):1499-1510. Zhuang Yaqin,Guo Qinghai,Liu Mingliang,et al.Geochemical Simulation of Thioarsenic Speciation in Hgh-Temperature,Sulfide-Rich Hot Springs:A Case Study in the Rehai Hydrothermal Area,Tengchong,Yunnan[J]. Earth Science,2016,41(9):1499-1510.
[26] 朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009,16(2):1-20. Zhu Dicheng,Mo Xuanxue,Zhao Zhidan,et al.Permian and Early Cretaceousc Tectonomagmatism in Southern Tibet and Tethjy and Evolution:New Perspective[J]. Earth Science Frontier,2009,16(2):1-20.
[27] 郑绵平,王秋霞,多吉.水热成矿新类型西藏铯硅华矿床[M].北京:地质出版,1995. Zheng Mianping,Wang Qiuxia,Duo Ji. New Types of Hydrothermal Mineralization,Tibet Cesium Silicate Deposit[M].Beijing:Geological Publishing House,1995.
[28] 赵元艺,聂凤军,侯增谦,等.西藏搭格架热泉型铯矿床地质特征及形成时代[J].矿床地质,2006,25(3):281-291. Zhao Yuanyi,Nie Fengjun,Hou Zengqian,et al.Geological Characteristics and Formation Age of Hot Spring Cesium Deposit Area,Tibet[J].Mineral Deposits,2006,25(3):281-291.
[29] 赵元艺,聂凤军,侯增谦,等.西藏搭格架热泉型铯矿床地球化学[J].矿床地质,2007,26(2):163-174. Zhao Yuanyi,Nie Fengjun,Hou Zengqian,et al.Geochemistry of Targejia Hot Spring Type Cesium Deposit in Tibet[J]. Mineral Deposits,2007,26(2):163-174.
[30] 沈立成,伍坤宇,肖琼,等.西藏地热异常区CO2脱气研究:以朗久和搭格架地热区为例[J].科学通报,2011,56(26):2198-2208. Shen Licheng,Wu Kunyu,Xiao Qiong,et al.Carbon Dioxide Degassing Flux from Two Geothermal Fields in Tibet,China[J].Chinese Science Bulletin,2011,56(26):2198-2208.
[1] Zhang Zhibo, Zhu Zhijun, Wang Wenfeng, Xu Ying, Li Lirong. Geochemical Characteristics and Formation Environment of Mesozoic and Cenozoic Evaporative Rocks in Lanping Basin, Western Yunnan [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 356-379.
[2] Wu Yongtao, Han Runsheng. C, O, Sr Isotope and REE Geochemistry of Maozu Pb-Zn Deposit in Northeastern Yunnan Mineral Concentration Area [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 400-413.
[3] Yin Zhengxin, Wang Haifeng, Han Jinsheng, Lü Xiuya, Shen Zezhong, Chen Jing, He Huizhong, Xie Anyuan, Guan Yao, Dong Chao. Comparison Between the Marginal-Sea Polymetallic Nodules in South China Sea and Ocean Polymetallic Nodules [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 261-277.
[4] Lü Junchao, Shu Guanglong, Zhang Debao, Zhao Yan, Liu Guixiang, Bi Zhongwei. Geochronology and Metallogenic Epoch of Shenshan Fe-Cu Deposit in Zhalaite County, Inner Mongolia and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1683-1695.
[5] Yang Fan, Wang Yan, Na Fuchao, Fu Junyu, Zhang Guangyu, Sun Wei, Pang Xuejiao, Chen Jingsheng, Liu Miao, Li Bin. Geological Significance and Metallogenic Epoch of the Baiyinnuoer Pb-Zn Deposit in Inner Mongolia: Constraints from Geochemistry and Chronology of Intrusive Rocks [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1696-1710.
[6] Shi Jizhong, Lu Jincai, Wei Jianshe, Niu Yazhuo, Han Xiaofeng, Zhang Yuxuan. Petrogenesis and Sedimentary Environment of Permian Maihanhada Formation Cherts in Yagan Region of Alxa Right Banner, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1711-1724.
[7] Gao Fuhong, He Yusi, Wang Feng, Xiu Ming. Provenance Characteristics and Tectonic Setting of Early Paleozoic Chenming Formation in Eastern Heilongjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1725-1740.
[8] Yin Zhigang, Li Haina, Zhang Hai, Hao Ke, Pang Xuechang, Gong Zhaomin, Li Min, Zhang Shengting. Formation Age, Geochemical Characteristics and Genesis of Granites in Northeastern Jiagedaqi of Daxing'anling [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1741-1755.
[9] Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1085-1104.
[10] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[11] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105-1120.
[12] Zhao Xilin, Jiang Yang, Xing Guangfu, Yu Shengyao, Peng Yinbiao, Huang Wencheng, Wang Cunzhi, Jin Guodong. Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1135-1153.
[13] Wang Chaoyang, Meng En, Li Zhuang, Li Yanguang, Jin Mengqi. Age, Petrogenesis and Their Constraints on Regional Crustal Evolution of Late Neoarchean Gneisses in Southeast Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 587-625.
[14] Qi Tianjiao, Xue Chunji, Xu Bixia. Zircon U-Pb Age and Geochemical Characteristics of Granites from Buheta Cu(Au) Mineralization District in Zhaosu County, Xinjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 132-144.
[15] Sun Fanting, Liu Chen, Qiu Dianming, Lu Qian, He Yunpeng, Zhang Mingjie. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 145-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!