Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (3): 797-806.doi: 10.13278/j.cnki.jjuese.20170309

Previous Articles     Next Articles

Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System

Fan Dongyan1, Sun Hai1, Yao Jun1, Li Huafeng2, Yan Xia1, Zhang Kai1, Zhang Lin1   

  1. 1. College of Petroleum Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. Logging Changqing Branch, CNPC, Xi'an 710201, China
  • Received:2017-12-27 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China (61573018,51774317) and Fundamental Research Funds for the Central Universities (17CX02008A)

Abstract: According to the process of heat extraction of fracture system in enhanced geothermal system (EGS) dry-hot-rock reservoir, a thermal-hydraulic coupling analytical model was established based on the discrete fracture network model. The Laplace transform was used to obtain the analytical solutions. The influence of the parameters of injection and production of five spot pattern was analyzed for the temperature and heat extraction at outlet. The results show that the temperature drop at outlet and the time of thermal breakthrough are different under different fracture network and well types. Under the same fracture network, the larger the fracture spacing is, the later the thermal breakthrough time is. When the fracture spacing is 50.0, 100.0 and 150.0 m, the thermal breakthrough time is 2.0 a, 5.2 a and 15.0 a, respectively. The smaller the injection rate is, the slower the temperature decreases. When the injection rate is 0.1, 0.2 and 0.3 kg/s, in production of 20.0 a, the temperature decreases by 53.0, 34.5, and 26.8℃, respectively; Orthogonal experimental analysis shows that well spacing has the greatest influence on injection-production parameters with a range of 13.15, followed by injection rate and injection temperature, while well type has smallest influence.

Key words: hot-dry-rock, enhanced geothermal system (EGS), discrete fracture network model, thermal-hydraulic coupled, analytical model

CLC Number: 

  • TK521
[1] Tester J, Anderson B, Batchelor A, et al. The Future of Geothermal Energy:Impact Geothermal System (EGS) on the United States in the 21st Century[R]. Cambridge:Massachusetts Institute of Technology, 2006.
[2] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4):1139-1152. Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, et al. Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J]. Journal of Jilin University(Earth Science Edition), 2016,46(4):1139-1152.
[3] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012,30(32):25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China[J]. Science & Technology Review, 2012, 30(32):25-31.
[4] Hori Y, Kitano K, Kaieda H, et al. Present Status of the Ogachi HDR Project, Japan, and Future Plans[J]. Geothermics,1999, 28(4):637-645.
[5] Zeng Yuchao, Zhan Jiemin, Wu Nengyou, et al. Numerical Simulation of Electricity Generation Potential from Fractured Granite Reservoir Through Vertical Well at Yangbajing Geothermal Field[J]. Energy, 130:290-304.
[6] Gelet R, Loret B, Khalili N.A Thermos-Hydro-Mechanical Coupled Model in Local Thermal Non-Equilibrium for Fractured HDR Reservoir with Double Porosity[J]. Journal of Geophysical Research, 2012, 117:1-23.
[7] Gan Q, Elsworth D. Production Optimization in Fractured Geothermal Reservoirs Coupled Discrete Fracture Network Modeling[J]. Geothermics, 2016, 62:131-142.
[8] Maffucci R, Bigi S, Corrado S, et al. Quality Assessment of Reservoirs by Means of Outcrop Data and "Discrete Fracture Network" Models:The Case History of Rosario De La Frontera (NW Argentina) Geothermal System[J]. Tectonophysics, 2015, 647:112-131.
[9] 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(6):109-117. Sun Zhixue, Xu Yi, Lü Shuhuan, et al. A Thermo-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems[J]. Journal of China University of Petroleum (Natural Science), 2016, 40(6):109-117.
[10] Cao Wenjiong,Huang Wenbo, Jiang Fangming. A Novel Thermal-Hydraulic-Mechanical Model for the Enhanced Geothermal System Heat Extraction[J]. International Journal of Heat and Mass Transfer, 2016, 100:661-671.
[11] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能开发热-水动力耦合过程[J]. 吉林大学学报(地球科学版), 2014, 44(5):1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin, China[J]. Journal of Jilin University(Earth Science Edition), 2014,44(5):1633-1646.
[12] Sun Zhixue, Zhang Xu, Xu Yi, et al. Numerical Simulation of the Heat Extraction in EGS with Thermal-Hydraulic-Mechanical Coupling Method Based on Discrete Fractures Model[J]. Energy, 2017, 120:20-33.
[13] Norbert B, Norihiro W, Gorke U, et al. Geoenergy Modeling I:Geothermal Processs in Fractured Porous Media[M]. Cham:Springer International Publishing, 2016.
[14] Norihiro W, Guido B, Mauro C, et al. Geoenergy Modeling Ⅲ:Enhanced Geothermal Systems[M]. Cham:Springer International Publishing, 2016.
[15] Brian B. Characterizing Flow and Transport in Fractured Geological Media:A Review[J]. Advances in Water Resources, 2002, 25:861-884.
[16] Fu Pengcheng, Scott M J, Carrigan R C. An Explicitly Coupled Hydro-Geomechanical Model for Simulating Hydraulic Fracturing in Arbitrary Discrete Fracture Networks[J]. Int J Numer Anal Meth Geomech, 2013; 37:2278-2300.
[17] 朱家玲, 张国伟, 李君, 等. 裂隙通道内流固换热系数解析解及敏感性分析[J]. 太阳能学报, 2016, 37(8):2019-2025. Zhu Jialing, Zhang Guowei, Li Jun, et al. Analytical Solution and Sensitivity Analysis of Fluid-Solid Heat Transfer Coefficient in Fracture Channel[J]. Acta Energiae Solaris Sinica, 2016, 37(8):2019-2025.
[18] 同登科, 陈钦雷. 关于Laplace数值反演Stehfest方法的一点注记[J]. 石油学报, 2001, 22(6):91-92. Tong Dengke, Chen Qinlei. A Note on the Laplace Numerical Inversion Stehfest Method[J]. Acta Petrolei Sinica, 2001, 22(6):91-92.
[19] Wagner W, Cooper J R, Dittmann A, et al. The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(1):150-182.
[20] Zeng Yuchao, Wu Nengyou, Su Zheng, et al. Numerical Simulation of Heat Production Potential from Hot Dry Rock by Water Circulating Through a Novel Single Vertical Fracture at Desert Peak Geothermal Field[J]. Energy, 2013, 63:268-282.
[1] Chen Baoyi, Yue Tao, Cao Pinlu, Wang Rusheng, Wang Maosen, Bo Kun, Long Xiang, Lu Siyu. Theoretical Analysis and Numerical Simulation of Heat Exchange Efficiency of U-Tube Ground Heat Exchanger Under the Condition of Soil Compaction [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1808-1814.
[2] Gao Ping,Zhang Yanjun,Fang Jingtao,Zhang Qing,Li Hongwei. Correlation of Shallow Layer Rock and Soil Thermal Physical Tests in Laboratory and Field [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 259-267.
[3] WANG Qing-hua, SUN You-hong, CHEN Chang-fu, WU Xiao-han. BTR-4000] In-Situ Testing Equipment of Strata Thermophysical Properties and Its Application [J]. J4, 2009, 39(2): 347-0352.
[4] HU Ji-hua,ZHANG Yan-jun,YU Zi-wang,WU Gang,YANG Xiao-ying,NI Fu-quan. Groundwater Flow Transfixion of Groundwater Source Heat Pump System and Its Influence on Temperature Field [J]. J4, 2008, 38(6): 992-0998.
[5] Li Zhengwei, Zhang Yanjun, Guo Liangliang, Jin Xianpeng. Prediction of Hydrothermal Production from Hot Dry Rock Development in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1189-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!