Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (3): 785-792.doi: 10.13278/j.cnki.jjuese.201703112

Previous Articles     Next Articles

Paleoelevation Reconstruction of Southwestern Tianshan Using Detrital Low-Temperature Thermochronology

Ding Ruxin1,2, Liang Shiyou3, He Jiangqi4   

  1. 1. School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Mineral Resources & Geological Processes, Guangzhou 510275, China;
    3. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, Jiangsu,China;
    4. Exploration Department, CNOOC Limited, Beijing 100010, China
  • Received:2016-12-07 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by the National Natural Science of China (41102131) and Natural Science Foundation of Guangdong Province (2015A030313193)

Abstract: At present, paleoelevation reconstructiion of the orogenic belt is mainly based on low-temperature thermochronology of samples collected within the orogenic belt. In this paper, a method is proposed to recover the average height change rate of the orogenic belt by using the low-temperature chronology of the detrital grains, which provides a new way for the restoration of orogenic paleo-terrain. It means that the large-scale and regional average exhumation rate can be calculated through the detrital single grain ages located in intramontane basin or piedmont, and then the average ancient height change rate of the erosion area can be calculated by the isostatic correction. In this paper, the calculation results are, by using the published 339 detrital grain ages of fission track, that the exhumation rate of 6-8 Ma (age peak) of southwestern Tianshan was 0.74-0.60 km/Ma, and the average ancient height change rate was 0.15 to 0.23 km/Ma and 0.12 to 0.19 km/Ma (decreasing rate). This conclusion indicates that the southwestern Tianshan has experienced a rapid exhumation since 6-8 Ma ago, in the case of without considering the structural uplift and other factors, and the average paleo-height has decreased rapidly 1 000-1 500 m since 8 Ma ago.

Key words: detrital grains, fission track, exhumation rate, southwestern Tianshan

CLC Number: 

  • P54
[1] Reiners P W. Thermochronologic Approaches to Paleotopography [J]. Reviews in Mineralogy and Geochemistry, 2007, 66: 243-267.
[2] Braun J,Van der Beek P A, Batt G. Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data [M]. Cambridge: Cambridge University Press,2006.
[3] Stock J D, Montgomery D R. Estimating Palaeorelief from Detrital Mineral Age Ranges [J]. Basin Research, 1996, 8: 317-327.
[4] Brewer I D, Burbank D W, Hodges K V. Modelling Detrital Cooling-Age Populations: Insights from Two Himalayan Catchments [J]. Basin Research, 2003, 15: 305-320.
[5] Brewer I D, Burbank D W, Hodges K V. Downstream Development of a Detrital Cooling-Age Signal Insights from 40Ar/39Ar Muscovite Thermochronology in the Nepalese Himalaya [C]//Willett S D, Hovius N, Brandon M T, et al. Tectonics, Climate, and Landscape Evolution. Boulder: Geological Society of America Special Paper, 2006: 321-338.
[6] Ruhl K W, Hodges K V. The Use of Detrital Mineral Cooling Ages to Evaluate Steady State Assumptions in Active Orogens: An Example from the Central Nepalese Himalaya [J]. Tectonics, 2005, 24: TC4015. doi 10. 1029/2004TC001712.
[7] Enkelmann E, Ehlers T A, Zeitler P K, et al. Denu-dation of the Namche Barwa Antiform, Eastern Himalaya [J]. Earth and Planetary Science Letter, 2011, 307(3/4): 323-333.
[8] Avdeev, Niemi N A. Clark M K. Doing More with Less: Bayesian Estimation of Erosion Models with Detrital Thermochronometric Data [J].Earth and Planetary Science Letters, 2011, 305(3/4): 385-395.
[9] 孙东霞, 钟大赉, 季建清, 等. 河砂岩屑磷灰石裂变径迹模拟流域热史:以藏东南察隅河为例 [J]. 地球物理学报, 2015, 58(2): 613-627. Sun Dongxia, Zhong Dalai, Ji Jianqing, et al. Inversion Model of Drainage Basins Tectono-Thermal Evolution Through Detrital AFT Ages:A Case Study of Chayu River in Southeastern Tibet [J]. Chinese Journal of Geophysics, 2015, 58(2): 613-627.
[10] Garver J I, Brandon M T, Roden-Tice M, et al. Exhumation History of Orogenic Highlands Determined by Detrital Fission Track Thermochronology [C]//Ring U, Brandon M T, Lister G S, et al. Exhumation Processes: Normal Faulting, Ductile Flow, and Erosion. London: Geological Society of London Special Publication, 1999, 154: 283-304.
[11] Brandon M T,Roden-Tice M K, Garver J I. Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Washington State [J]. GSA Bulletin, 1998, 110(8): 985-1009.
[12] Mancktelow N S, Grasemann B. Time-Dependent Effects of Heat Advection and Topography on Cooling Histories During Erosion [J]. Earth Planet Sci Lett, 1997,270: 167-195.
[13] Wagner G A, Reimer G M. FissionTrack Tectonics: The Tectonic Interpretation of Fission Track Apatite Ages [J]. Earth and Planetary Science Letters, 1972, 14: 263-268.
[14] Reiners P W, Ehlers T A, Garver J I, et al.Late Miocene Exhumation and Uplift of the Washington Cascade Range [J]. Geology, 2002, 30(9): 767-770.
[15] Reiners P W, Zhou Z Y, Ehlers T A, et al.Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology [J]. American Journal of Science, 2003, 303: 489-518.
[16] Zhou Zuyi, Xu Changhai, Reiners P W, et al. Late Cretaceous-Cenozoic Exhumation History of Tiantangzhai Region of Dabieshan Orogen: Constraints from (U-Th)/He and Fission Track Analysis [J]. Chinese Science Bulletin, 2003, 48(11): 1151-1156.
[17] Stüwe K, White L, Brown R. The Influence of Eroding Topography on Steady-State Isotherms, Application to Fission Track Analysis [J]. Earth Planet Sci Lett, 1994, 124: 63-74.
[18] Hodges K V,Ruhl K W, Wobus C W, et al. 40Ar/39Ar Thermochronology of Detrital Minerals [J]. Reviews in Mineralogy and Geochemistry, 2005, 58: 239-257.
[19] 丁汝鑫, 陈国能, 周祖翼,等.利用低温热史恢复大别造山带晚白垩世以来的古高度 [J]. 吉林大学学报(地球科学版), 2012, 42(增刊1):247-253. Ding Ruxin, Chen Guoneng, Zhou Zuyi, et al. The Paleoelevation Reconstruction of Late Cretaceous Dabie Orogen by Low-Temperature Thermochronological Modelling Data [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(Sup.1): 247-253.
[20] Turcotte D L, Schubert G. Geodynamics [M]. New York: John Wiley and Sons,1982.
[21] Braun J, Robert X. Constraints on the Rate of Post-Orogenic Erosional Decay from Thermochronological Data: Example from the Dabie Shan, China [J]. Earth Surf Proc Land, 2005, 30: 1203-1225.
[22] 陈正乐, 李丽, 刘健, 等. 西天山隆升剥露过程初步研究[J].岩石学报, 2008, 24(4): 625-636. Chen Zhengle, Li Li, Liu Jian, et al. Preliminary Study on the Uplifting-Exhumation Process of the Western Tianshan Range, Northern China [J]. Acta Petrologica Sinica, 2008, 24(4): 625-636.
[23] 王丽宁, 季建清, 孙东霞, 等. 西南天山隆起时代的河床砂岩屑磷灰石裂变径迹证据 [J]. 地球物理学报, 2010, 53(4): 931-945. Wang Lining, Ji Jianqing, Sun Dongxia, et al. The Uplift History of South-Western Tianshan-Implications from AFT Analysis of Detrital Samples [J]. Chinese Journal of Geophysics, 2010, 53(4), 931-945.
[24] 高峻,何国琦,李茂松.西天山造山带的构造变形特征研究 [J].地球学报,1997, 18(1): 1-10. Gao Jun, He Guoqi, Li Maosong. Studies on the Features of the Structural Deformations in the Western Tianshan Orogenic Belt [J]. Acta Geoscientica Sinica, 1997, 18(1): 1-10.
[25] 陈正乐, 万景林, 刘健, 等. 西天山山脉多期次隆升-剥露的裂变径迹证据 [J]. 地球学报, 2006, 27(2): 97-106. Chen Zhengle,Wan Jinglin, Liu Jian, et al. Multi-Stage Uplift and Exhumation of the West Tianshan Mountain: Evidence from the Apatite Fission-Track Dating [J]. Acta Geoscientica Sinica, 2006, 27(2): 97-106.
[26] 李秋生, 卢德源, 高锐, 等. 新疆地学断面(泉水沟—独山子)深地震测深成果综合研究 [J]. 地球学报, 2001, 22(6): 534-540. Li Qiusheng, Lu Deyuan, Gao Rui, et al. An Integrated Study of Deep Seismic Sounding Profiling Along Xinjiang Global Geosciences Transect (Quanshuigou-Dushanzi) [J]. Acta Geoscientica Sinica,2001, 22(6): 534-540.
[27] Neil E A, Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia [J]. Tectonics, 1997, 16: 571-584.
[28] 邱楠生. 中国西北部盆地岩石热导率和生热率特征 [J]. 地质科学, 2002, 37(2): 196-206. Qiu Nansheng. Characters of Thermal Conductivity and Radiogenic Heat Production Rate in Basins of Northwest China [J]. Chinese Journal of Geology, 2002, 37(2): 196-206.
[29] 赵平, 汪集旸. 热流-生热率线性关系研究综述 [J]. 地球物理学进展, 1995, 10(2): 16-31. Zhao Ping, Wang Jiyang. Review on the Linear Heat-Flow Heat Production Relation [J]. Progeress in Geophysics, 1995, 10(2): 16-31.
[30] 袁炳强, Poudjom Djomani Y H, 王平, 等. 北冰洋—欧亚大陆—太平洋地学断面东南段岩石圈有效弹性厚度 [J]. 地球科学:中国地质大学学报, 2002, 27(4): 397-402. Yuan Bingqiang, Poudjom Djomani Y H,Wang Ping, et al. Effective Lithospheric Elastic Thickness of Southeastern Part of Arctic Ocean-Eurasia Continent-Pacific Ocean Geoscience Transect [J]. Earth Science:Journal of China University of Geosciences,2002, 27(4): 397-402.
[31] 付永涛, 范守志, 施小斌. 关于岩石圈有效弹性厚度的地质理解 [J]. 地质科学, 2005, 40(4): 585-593. Fu Yongtao, Fan Shouzhi, Shi Xiaobin. Geological Interpretation of the Lithosphere Effective Elastic Thickness [J]. Chinese Journal of Geology, 2005, 40(4): 585-593.
[32] 雷显权,陈运平,赵俊猛, 等.天山造山带深部探测及地球动力学研究进展 [J].地球物理学进展, 2012, 27(2): 417-428. Lei Xianquan, Chen Yunping, Zhao Junmeng, et al. Deep Probe in the Tianshan Orogenic Belt and Its Geodynamics [J]. Progress in Geophysics, 2012, 27(2): 417-428.
[33] 赵俐红, 姜效典, 金煜, 等. 中国西部大陆岩石圈的有效弹性厚度研究 [J]. 地球科学:中国地质大学学报, 2004, 29(2): 183-190. Zhao Lihong, Jiang Xiaodian, Jin Yu, et al. Effective Elastic Thickness of Continental Lithosphere in Western China [J]. Earth Science:Journal of China University of Geosciences,2004, 29(2): 183-190.
[1] Ding Qingfeng, Fu Yu, Wu Changzhi, Dong Lianhui, Qu Xun, Cao Changsheng, Xia Mingyi, Sun Hongtao. Evolution of the Ore-Forming Fluid of the Awanda Gold Deposit in Southwestern Tianshan Orogenic Belt, Xinjiang [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 142-155.
[2] Li Tianyi,He Zhiliang,He Sheng,Zhou Yan,Sun Dongsheng,Wo Yujin,Yang Xingye. Characteristics and Its Petroleum Geological Significance of the Permian Paleo-Oil Reservoir of Jingshan Area, the North Edge of the Central Yangtze Block [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1740-1752.
[3] HOU Ming-cai, LI Zhi-wu, CHEN Hong-de. Differential Uplift Process of Longmen Mountain in Mesozoic-Cenozoic [J]. J4, 2012, 42(1): 104-111.
[4] GAO Jun-peng, FANG Xiao-min, SONG Chun-hui, LI Sheng-xi, XUE Jian-ping. Tectonic-Thermo Events of Northern Tibetan Plateau: Evidence from Detrital Apatite Fission Track Data in Western Qaidam Basin [J]. J4, 2011, 41(5): 1466-1475.
[5] FANG Shi,LIU Zhao-jun,HUANG Xiang-tong,GUO Wei,LIU Zhi-qiang. Uplift and Topography Evolution Research at FT in Cenozoic of South-Eastern Slope of Daxing’anling Mountains [J]. J4, 2008, 38(5): 771-0776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!