Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (3): 925-932.doi: 10.13278/j.cnki.jjuese.201703306

Previous Articles     Next Articles

Uncertainty Analysis of Geological Boundaries in 3D Cross-Section Based on Monte Carlo Simulation

Hou Weisheng1,2, Yang Qiaochu1,2, Yang Liang1,2, Cui Chanjie1,2   

  1. 1. School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Mineral Resource Exploration & Geological Processes, Guangzhou 510275, China
  • Received:2016-08-02 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41102207, 41472300), the Fundamental Research Funds for the Central Universities (12lgpy19) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20100171120001)

Abstract: Geological boundaries in 3D cross-sections are important data for constructing 3D geological models, and their uncertainties will affect the geometry and attributes distribution in final models. The approaches based on the assumption of single error distribution for uncertainty analysis cover up other characteristics caused by other different error distributions. To break the single error distribution assumptions, based on the Monte Carlo simulation method, this paper simulated the sampling acquisition with different error probability distributions and spatial uncertainty of geological boundaries in 3D geological cross-section. Based on the coupling relationship between spatial position and geological attributes, a term of "geological attribute probability" was proposed to quantitatively visualize uncertainty of geological boundaries. Combined with concrete geological cross-section, this paper discussed the spatial uncertainty distribution of geological boundaries that followed multiple error probability distribution functions. The concrete example shows that the presented approach can overcome the defects of single error distribution assumption. Combined with the geological attribute probability, the approach can also reveal the coupling relationship between inner uncertainties existed in modeling input data and feature shape of models.

Key words: uncertainty analysis, Monte Carlo simulation, geological boundaries, geological attribute probability, 3D geological cross-section

CLC Number: 

  • P628.1
[1] Ben Waggoner. The Map That Changed the World: William Smith and the Birth of Modern Geology[J]. Palaeontologia Electronica, 2002, 5(1): 1-4.
[2] Wu Q, Xu H, Zou X. AnEffective Method for 3D Geological Modeling with Multi-Source Data Integration[J]. Computers & Geosciences, 2005, 31(1):35-43.
[3] 潘懋, 方裕, 屈红刚. 三维地质建模若干基本问题探讨[J]. 地理与地理信息科学, 2007, 23(3):1-5. Pan Mao, Fang Yu, Qu Honggang. Discussion on Several Foundational Issues in Three-Dimensional Geological Modeling[J]. Geography and Geo-Information Science, 2007, 23(3):1-5.
[4] 张剑波, 李谢清, 石阳,等. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3):860-868. Zhang Jianbo, Li Xieqing, Shi Yang, et al. Processes and Technology of Three-Dimensional Geological Modeling System in Numerical Reservoir Simulation[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):860-868.
[5] Wu Q, Xu H, Zou X, et al. A 3D Modeling Approach to Complex Faults with Multi-Source Data[J]. Computers & Geosciences, 2015, 77:126-137.
[6] 屈红刚. 基于交叉折剖面的3维地质表面建模方法研究[J]. 测绘学报, 2006, 35(4): 411. Qu Honggang. Three-Dimensional Geological Surface Modeling from Intersected Folded Cross-Sections[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4): 411.
[7] Ming J, Pan M, Qu H, et al. GSIS: A 3DGeological Multi-Body Modeling System from Netty Cross-Sections with Topology[J]. Computers & Geosciences, 2010, 36(6):756-767.
[8] Kaufmann O, Martin T. Reprint of "3D Geological Modelling from Boreholes, Cross-Sections and Geological Maps, Application over Former Natural Gas Storages in Coal Mines"[J]. Computers & Geosciences, 2008, 34(3): 278-290.
[9] Lemon A M, Jones N L. BuildingSolid Models from Boreholes and User-Defined Cross-Sections[J]. Computers & Geosciences, 2003, 29 (5): 547-555.
[10] Wellmann J F, Horowitz F G, Schill E, et al. Towards Incorporating Uncertainty of Structural Data in 3D Geological Inversion[J]. Tectonophysics, 2010, 490(3): 141-151.
[11] Hou W, Yang L, Clarke K. Error Analysis of Multi-Source Data for 3D Geological Modeling Using Entropy-Based Weighting[C]//AGU Fall Meeting 2013. [S. l.]: AGU, 2013: #IN32A-06.
[12] Caers J. ModelingUncertainty in the Earth Sciences [M]. New York: Wiley, 2011.
[13] 史文中. 空间数据与空间分析的不确定性原理[M]. 北京: 科学出版社, 2005. Shi Wenzhong. Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses[M]. Beijing: Science Press, 2005.
[14] 张国芹, 朱长青, 李国重. 基于εm模型的线元位置不确定性度量指标[J]. 武汉大学学报(信息科学版), 2009, 34(4): 431-435. Zhang Guoqin, Zhu Changqing, Li Guozhong. Masurement Indexes of Positional Uncertainty for Plane Line Segment Based on εm Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 431-435.
[15] 李大军, 龚健雅, 谢刚生, 等. GIS中线元的误差熵带研究[J]. 武汉大学学报(信息科学版), 2002, 27(5): 462-466. Li Dajun, Gong Jianya, Xie Gangsheng, et al. Error Entropy Band for Linear Segments in GIS[J]. Geomatics and Information Science of Wuhan University, 2002, 27(5): 462-466.
[16] 田原, 高勇, 刘瑜. 基于场所的GIS 中的不确定性问题及分类框架[J]. 地理与地理信息科学, 2008, 24(6): 1-7. Tian Yuan, Gao Yong, Liu Yu. Uncertainty in Place-Based GIS: A Review and a Research Framework [J]. Geography and Geo-Information Science, 2008, 24(6): 1-7.
[17] Davis C J. Statistics and Data Analysis in Geology[M]. 3rd ed. New York: Wiley, 2002.
[18] Nicholas Metropolis, Ulam S. The Monte Carlo Me-thod[J]. Journal of the American Statistical Association, 1953, 60(247): 115-129.
[19] Morin M A, Ficarazzo F. Monte Carlo Simulation as a Tool to Predict Blasting Fragmentation Based on the Kuz-Ram Model[J]. Computers & Geosciences, 2006, 32(3):352-359.
[20] Tong X, Sun T, Fan J, et al. A Statistical Simulation Model for Positional Error of Line Features in Geographic Information Systems (GIS)[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 136-148.
[21] Shi W, Liu W.A Stochastic Process-Based Model for the Positional Error of Line Segments in GIS[J]. International Journal of Geographical Information Science, 2000, 14 (1): 51-66.
[1] YU Hua-wei,SUN Jian-meng, LAI Fu-qiang, WANG Min, YANG Jin-zhou. Improving Compensated Neutron Log Vertical Resolution Under Deviated and Horizontal Well Conditions and Its Application [J]. J4, 2009, 39(2): 334-0341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!