Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (3): 933-948.doi: 10.13278/j.cnki.jjuese.201703307

Previous Articles    

Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections: A Case Study of Manganese Deposits in Southwestern Guangxi, China

Zhang Baoyi1,2,3, Yang Li1, Chen Xiaoyang1, Deng Hao1, Mao Xiancheng1   

  1. 1. MOE Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring/School of Geosciences & Info-Physics, Central South University, Changsha 410083, China;
    2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074,China;
    3. Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84112, USA
  • Received:2016-08-29 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by the Grants of the National Science Foundation of China (41302259, 41472302) and the Project of National Science and Technology Pillar Program During the 12th Five-Year Plan Period of China (2011BAB04B10)

Abstract: The 2D quantitative mineral prediction based on the study of metallogenic laws and the analysis of metallogenic conditions cannot precisely deseribe the 3D spatial distribution of ore bearing strata, and results in the unreliability of prediction. Aiming at the real 3D geosciences analysis needs of the prediction and evaluation of mineral resources, taking planar geological map and geological cross-sections as the data source of 3D geological modeling, a wire frame modeling method is presented to reconstruct 3D surface of geological bodies according to profiles on cross-sections and planar map, and applied to describe the 3D spatial distribution of manganese geological bodies in southwestern Guangxi. Meanwhile, in order to analyze the 3D spatial distribution of manganese ore resources, the 3D geological space of the study area is divided into continuous field by regular voxels, and the 3D spatial distribution of manganese ore resources in the manganese bearing strata from 1 000 meters to the shallow is obtained on the basis of the regional manganese metallogenic 2D quantitative prediction results. The manganese ore resources in the study area are mainly concentrated in Upper Devonian (mainly in the Wuzhishan Group), 50 360 kiloton, and in the Beisi group of Lower Triassic, 34 470 kiloton, while the resource in the Datang Group of Lower Carboniferous is only 5 660 kiloton, which was over-estimated in the 2D prediction. The 3D geological modeling improves the reliability of the quantitative prediction of the manganese ore, and better reflects the controlling effect of the manganese bearing strata on the distribution of manganese ore.

Key words: geologic map cut cross-section, geo-bodies 3D modeling, manganese deposit, 3D predicted reserve

CLC Number: 

  • P612
[1] 赵鹏大. 找矿理念:从定性到定量(代序)[J]. 地质通报, 2011, 30(5): 625-629.
Zhao Pengda. Prospecting Idea: From Qualitative to Quantitative(Preface)[J]. Geological Bulletin, 2011, 30(5): 625-629.
[2] 张宝一, 吴湘滨, 王丽芳, 等. 三维地质建模及应用实例[J]. 地质找矿论丛, 2013, 28(3): 328-336.
Zhang Baoyi, Wu Xiangbin, Wang Lifang, et al. Three Dimensional Geological Modeling and Application Cases[J].Contributions to Geology and Mineral Resources Research, 2013, 28(3): 328-336.
[3] Houlding S W. 3D Geoscience Modeling: Computer Techniques for Geological Characterization[M]. Berlin: Springer-Verlag, 1994.
[4] Mallet J L. Geomodeling[M]. New York: Oxford University Press, 2002.
[5] 吴立新, 车德福,郭甲腾. 面向地上下无缝集成建模的新一代三维地理信息系统[J]. 测绘工程, 2006, 15(5): 1-6.
Wu Lixin, Che Defu,Guo Jiateng. The New 3DGIS for Seamless Integration of Terrain Overground and Underground Entities[J].Surveying and Mapping Engineering, 2006, 15(5): 1-6.
[6] 潘懋, 方裕,屈红刚. 三维地质建模若干基本问题探讨[J]. 地理与地理信息科学, 2007, 23(3): 1-5.
Pan Mao, Fang Yu, Qu Honggang.Discussion on Several Foundational Inssues in Three-Dimensional Geological Modeling[J].Geography and Geographic Information Science, 2007, 23(3): 1-5.
[7] 薛林福, 李文庆, 张伟, 等. 分块区域三维地质建模方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2051-2058.
Xue Linfu, Li Wenqing, Zhang Wei, et al.A Method of Block-Divided 3D Geologic in Regional Scale[J].Journal of Jilin University (Earth Science Edition), 2014, 44(6): 2051-2058.
[8] 陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5): 54-62.
Chen Jianping,Lü Peng, Wu Wen, et al. A 3D Method for Predicting Blind Orebodies, Based on a 3D Visualization Model and Its Application[J].Earth Science Frontiers, 2007, 14(5): 54-62.
[9] 毛先成, 邹艳红, 陈进, 等. 危机矿山深部、边部隐伏矿体的三维可视化预测:以安徽铜陵凤凰山矿田为例[J]. 地质通报, 2010, 29(2/3): 401-413.
Mao Xiancheng, Zou Yanhong, Chen Jin, et al. Three-Dimensional Visual Prediction of Concealed Ore Bodies in the Deep and Marginal Parts of Crisis Mines: A Case Study of the Fenghuangshan Ore Field in Tongling, Anhui, China[J].Geological Bulletin, 2010, 29(2/3): 401-413.
[10] 张宝一, 吴湘滨, 王丽芳, 等. 红透山铜矿外围隐伏矿体三维定量预测[J]. 中国有色金属学报, 2012, 22(3): 863-871.
Zhang Baoyi, Wu Xiangbin, Wang Lifang, et al.3D Quantitative Prediction of Concealed Ore-Body in Surrounding Areas of Hongtoushan Copper Deposit[J].Chinese Journal of Nonferrous Metals, 2012, 22(3): 863-871.
[11] 王丽芳, 吴湘滨, 张宝一, 等. 一种可存储路径的三维非均质空间最短距离场生成算法[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1257-1268.
Wang Lifang, Wu Xiangbin, Zhang Baoyi, et al.A Path-Savable Shortest-Distance Field Generating Algorithm in Three-Dimensional Heterogenetic Space[J].Journal of Jilin University (Earth Science Edition),2015, 45(4): 1257-1268.
[12] 骆华宝. 我国优质锰矿的勘查方向[J]. 地质与勘探, 2002, 38(4): 8-11.
Luo Huabao.The Direction of Prospecting for High Quality Manganese Ore Resources in China[J].Geology and Exploration, 2002, 38(4): 8-11.
[13] 邓吉秋, 谢杨, 张宝一, 等. ETM+图像锰矿化蚀变信息提取与找矿预测[J]. 国土资源遥感, 2011, 22(1): 102-105.
Deng Jiqiu, Xie Yang, Zhang Baoyi,et al.The Extraction of the Manganese Mineralization Alteration Information from the ETM+ Image and Ore Prognosis[J]. Remote Sensing of Land and Resources, 2011, 22(1): 102-105.
[14] 毛先成, 曾文波, 周尚国, 等. 桂西—滇东南地区数字地形特征与次生富集锰矿空间分布关系研究[J]. 地质与勘探, 2009, 45(3): 292-298.
Mao Xiancheng, Zeng Wenbo, Zhou Shangguo, et al.Research on Relationship between Digital Terrain Characteristics and Spatial Distribution of Secondary Enrichment Manganese Ore in Western Guangxi and Southeastern Yunan, SW China[J]. Geology and Exploration, 2009, 45(3): 292-298.
[15] Mao X C, Hu C, Zhou S G, et al. Field Analysis of MetallogenicInformation and Its Application[J]. J Cent South Univ Technol, 2011, 18(1): 196-207.
[16] 张宝一, 毛先成, 周尚国, 等. 矿产资源预测评价数据库的设计与实现:以桂西[CD1]滇东南锰矿为例[J]. 地质与勘探, 2009, 45(6): 697-703.
Zhang Baoyi, Mao Xiancheng, Zhou Shangguo, et al.The Design and Implement of Prediction and Assessment for Mineral Resources Database: In Case of Manganese Deposit in the Western Guangxi and Southeastern Yunnan Province[J].Geology and Exploration, 2009, 45(6): 697-703.
[17] 张宝一, 杨莉, 毛先成, 等. 基于GIS的桂西[CD1]滇东南地区锰矿资源潜力评价[J]. 地质与勘探, 2014, 50(6): 1050-1060.
Zhang Baoyi, Yang Li, Mao Xiancheng, et al.The GIS-Based Assessment of Potential Manganese Ore Resoueces in Western Guangxi and Southeastern Yunan Area, China[J]. Geology and Exploration, 2014, 50(6): 1050-1060.
[18] 毛先成, 周尚国, 张宝一, 等. 锰矿GIS分析与评价:以桂西—滇东南地区为例[M]. 北京: 地质出版社, 2014.
Mao Xiancheng, Zhou Shangguo, Zhang Baoyi,et al. Analysis and Evaluation of GIS in Manganese Ores: A Case Study in Western Guangxi and Southeastern Yunan Area, China[M].Beijing: Geological Publishing House, 2014.
[19] Zhang B Y, Li X, Mao X C, et al. A Predictive GIS Model for Mapping Potential Manganese Mineralization in Western Guangxi and Southeastern Yunnan, China[C]//The 23rd International Conference on Geoinformatics. Wuhan: CPGIS, 2015: 172-183.
[20] 侯宗林, 薛友智, 黄金水, 等. 扬子地台周边锰矿[M]. 北京: 冶金工业出版社, 1997.
Hou Zonglin, Xue Youzhi, Huang Jinshui,et al. Yang Zi Platform Surrounding Manganese Ore[M].Beijing: Metallurgical Industry Press, 1997.
[21] 刘修国, 陈国良, 侯卫生, 等. 基于线框架模型的三维复杂地质体建模方法[J]. 地球科学, 2006, 31(5): 668-672.
Liu Xiuguo, Chen Guoliang, Hou Weisheng, et al. 3D Complex Geological Entity Modeling Method Based on Line Frame Model[J].Earth Sciences, 2006, 31(5): 668-672.
[22] Perrin M, Zhu B, Rainaud J F, et al. Knowledge-Driven Applications for Geological Modeling[J]. Journal of Petroleum Science and Engineering, 2005, 47(1/2): 89-104.
[23] 王李管, 曾庆田, 贾明涛, 等. 复杂地质构造矿床三维可视化实体建模技术[J]. 金属矿山, 2006(12): 46-49.
Wang Liguan, Zeng Qingtian, Jia Mingtao,et al.Technology of Three-Dimensional Visualized Solid Modeling for Mineral Deposit with Complicated Geological Structure[J]. Metal Mine, 2006(12): 46-49.
[24] Roberto V,Chiaruttini C. Modeling and Reasoning Techniques in Geologic Interpretation[J]. IEEE Transactions on System, Man, and Cybernetics:Part A: Systems and Humans, 1999, 29(5): 460-473.
[25] 程朋根, 王承瑞, 甘卫军, 等. 基于多层DEM 与QTPV 的混合数据模型及其在地质建模中的应用[J]. 吉林大学学报(地球科学版), 2005, 35(6): 806-811.
Cheng Penggen, Wang Chengrui, Gan Weijun,et al.A Hybrid 3D Data Model Based on Multi-DEMs and QTPVs and Its Application in Geological Modeling[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(6): 806-811.
[26] 程朋根, 刘少华, 王伟, 等. 三维地质模型构建方法的研究及应用[J]. 吉林大学学报(地球科学版), 2004, 34(2): 309-313.
Cheng Penggen, Liu Shaohua, Wang Wei, et al. Study and Application of a New 3D Geological Model Construction Method[J].Journal of Jilin University (Earth Science Edition), 2004, 34(2): 309-313.
[27] Zhang B Y, Wu X B, Wang L F, et al. The Preliminary Research of Feature-Based 3D Geological Modeling[C]//The 2nd Conference on Environmental Science and Information Application Technology (ESIAT'2010). Wuhan: IITA, 2010: 321-325.
[1] Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716.
[2] Zhang En, Li Mingsong, Lu Huixiong, Li Huaiyuan, Quan Xudong, Wang Bing, Dong Shuangfa. Application of Weight Evidence Method to Lead-Zinc Metallogenic Prognosis in Yichun Area,Heilongjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1419-1428.
[3] Song Mingchun,Li Sanzhong,Yi Pihou,Cui Shuxue,Xu Junxiang,Lü Guxian,Song Yingxin,Jiang Hongli,Zhou Mingling,Zhang Pijian,Huang Tailing,Liu Changchun,Liu Dianhao. Classification and Metallogenic Theory of the Jiaojia-Style Gold Deposit in Jiaodong Peninsula, China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 87-104.
[4] Peng Yi, He Yuliang, Zeng Tao, Zhong Jiangwen, Xu Guoli, Su Xiaoyan,Chen Jun, Peng Songmin, Li Zhen. Regional Metallogenic and Synthetic Information Prediction Models of Mo Deposits in Henan Province, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1262-1275.
[5] Huang Guocheng, Dong Xuefa, Wu Xiaoyong, Li Xiang. Integrated Prospecting Forecasting Model of Xuechuan Region in Lin’an, Zhejiang Province, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1276-1282.
[6] Cai Yuqi,Xu Hao,Guo Qingyin,Zhu Pengfei,Wang Yuanzhi,Xie Yingchun. Metallogenic Prognosis and Prospecting Orientation of Granite Type Uranium Deposit in Taoshan Area,Jiangxi Province, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1283-1291.
[7] Zhang Tong,Xu Liquan,Yan Jie,Zhang Tingting. Comprehensive Information Prediction of Gold Deposits in Baiyun’ebo Group, Inner Mongolia, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1246-1253.
[8] Li Jianguo,Xiao Keyan,Liu Yongshun,Yang Junquan. Metallogenic Prognosis of Copper Polymetallic Mineral Resources in Narenbaolige Area on Basis of Weights of Evidence Method and GIS [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1151-1158.
[9] Ding Xing-yu,Dai Ta-gen,Liu Xiao-wei. Ore Prospecting Potential of the Polymetallic Metallogenic Belt in the South of SE Yunnan [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1730-1730.
[10] CHEN Wen-cheng. Spatial Analysis Model of MapGIS with Evaluation of Mineralization Prospect [J]. J4, 2012, 42(1): 280-288.
[11] WANG De-hong, TANG Ju-xing, YING Li-juan, CHEN Zheng-hui, HU Jian-xiang, ZHANG Jia-jing, LI Shui-ru, CENG Zai-lin. Application of “Five levels + Basement&rdquo|Model for Prospecting Deposits into Depth [J]. J4, 2010, 40(4): 733-738.
[12] WANG Jian-xin, ZHANG Jun-hua, WANG Chao, FU Yang, SUN Zhen-ming, DING Pei-chao. Spatial Variability of Composition of Mesozoic Volcanic Rocks and Metallogenic Regularity in Northeast China [J]. J4, 2010, 40(4): 752-763.
[13] ZHANG Zhi-bin, LI Jian-hua, HUANG Chao-yi, LIU Hong, DIAO Yan-hui. Study on Genesis and Ore Prospecting of Dongshengmiao Deposit in Inner Mongolia [J]. J4, 2010, 40(4): 791-800.
[14] XIE Shui-sheng, YUAN Xin. Further Development and Application of Geosciences Synthetic
Information Maps Database Management System
[J]. J4, 2010, 40(3): 726-732.
[15] XIE Shui-sheng, Chen Hui-juan. A Study of the Development and Application of Maps Database Management System for the Mineral Resources Assessment by Comprehensive Information [J]. J4, 2009, 39(3): 547-553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!