Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (6): 1717-1731.doi: 10.13278/j.cnki.jjuese.201706111

Previous Articles     Next Articles

Fluid Inclusion of Yaojiagou Porphyry Mo Deposit in Qingchengzi in Liaoning Province

He Chengzhong1,2, Zhang Dehui1, Wu Mingqian1, Xia Yan3, Zhang Rongzhen1,4, Hu Tiejun5   

  1. 1. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;
    2. No.10 Gold Geological Party of CAPF, Kunming 650111, China;
    3. Qingchengzi Mining Co., Ltd., Fengcheng 118100, Liaoning, China;
    4. Henan Institute of Geological Survey, Zhengzhou 450001, China;
    5. Nonferrous Geological Bureau Exploration Institute of Liaoning Province, Shenyang 110000, China
  • Received:2017-03-22 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by the National Natural Science Foundation of China(41373048) and Public Welfare Industry Research of Ministry of Land and Resources(201411024)

Abstract: The Yaojiagou molybdenum deposit is a newly discovered one in recent years in the ore field of Qingchengzi in Liaoning. It is located in the Yan-Liao Mo metallogenic belt in the northern margin of the North China craton. The quartz veins (UST)and quartz eyes in the Yaojiagou pluton are direct evidence of fluid exsolution from magma. Deposit alteration zonation is significant,and the molybdenum mineralization mainly exists in the potassic and skarn zones. After a microscopic observation,we found various abundant fluid inclusions,including single-phase aqueous (PW-type), two-phase aqueous (W-type), three-phase CO2 (C-type), pure CO2 (PC-type),and daughter mineral-bearing inclusions (S-type) in which the daughter minerals are hematite, chalcopyrite,and some other unknown minerals with no halite. The fluid evolution in this deposit are:1) the early quartz eye stage with the homogenization temperature of 211.4-515.4℃, salinity of 0.8%-19.2%,and rich in CO2; 2) the quartz veins mineralization stage with the homogenization temperature of 179.5-424.5℃ and salinity of 2.4%-21.5% in NaCl-H2O-CO2 system;3) the late quartz veins stage with the homogenization temperature of 167.8-353.3℃ and salinity of 3.4%-15.8% in NaCl-H2O-CO2 system;4) the latest calcite veins stage with the homogenization temperature of 132.5-234.1℃ and salinity of 0.9%-11.2% in NaCl-H2O system;5)the UST quartz veins stage with the homogenization temperature of 158.6-381.7℃ and salinity of 1.6%-21.5% in NaCl-H2O-CO2 system, and this stage represents a immiscible fluid exsolution from a shallower intrusive magma with no mineralization. Wall rock alteration and fluid mixing are the main mechanisms of ore-forming metal elements precipitation,which lead to fluid temperature, pressure reduction, CO2 escaping,and system rebalancing. We obtained the capture pressure of 124-180 MPa with the corresponding depth of 4.6-7.0 km during the ore-forming period by using the method of isochore intersection. It is relatively deeper than that of the other molybdenum deposits in the northern margin of the North China craton.

Key words: Yaojiagou Mo deposit, porphyry deposit, fluid inclusion, fluid's characteristics, metallogenic depths, Qingchengzi ore field

CLC Number: 

  • P618.65
[1] Zeng Q, Liu J, Qin K, et al. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China[J]. International Geology Review, 2013, 55(11):1311-1358.
[2] 方俊钦, 聂凤军, 张可, 等. 辽宁姚家沟钼矿床辉钼矿Re-Os同位素年龄测定及其地质意义[J]. 岩石学报, 2012, 28(2):372-378. Fang Junqin, Nie Fengjun, Zhang Ke,et al. Re-Os Isotopic Dating on Molybdenite Separates and Its Geological Significance from the Yaojiagou Molybdenum Deposit, Liaoning Province[J].Acta Petrologica Sinica,2012,28(2):372-378.
[3] 刘国平, 艾永富. 辽宁小佟家堡子金矿床成矿时代探讨[J]. 矿床地质, 2002, 11(1):53-57. Liu Guoping, Ai Yongfu. Study on Ore-Forming Epoch of Xiaotongjiabaozi Gold Deposit,Liaoning Province[J]. Mineral Deposits 2002,11(1):53-57.
[4] 薛春纪, 陈毓川, 路远发, 等. 辽东青城子矿集区金、银成矿时代及地质意义[J]. 矿床地质, 2003, 22(2):177-184. Xue Chunji, Chen Yuchuan, Lu Yuanfa, et al. 2003. Metallogenic Epochs of Au and Ag Deposits in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province[J]. Mineral Deposits, 2003,22(2):177-184.
[5] 代军治. 辽宁青城子地区金、银矿床成矿流体特征及成因探讨[D]. 长春:吉林大学, 2005. Dai Junzhi. Characteristics of Ore-Forming Fluids and Discussion on the Genesis of Au,Ag Deposits in Qingchengzi Region, Liaoning Province[D].Changchun:Jilin University,2005.
[6] 李基宏. 辽宁青城子铅锌银金矿集区成矿条件与成矿预测[D]. 长春:吉林大学, 2005. Li Jihong. Study on Ore-Forming Conditions and Mineral Resource Assessment of Lead-Zinc-Silver-Gold Metallogenic Belt in Qingchenzi,Liaoning Province[D]. Changchun:Jilin University,2005.
[7] Yu G, Chen J, Xue C, et al. Geochronological Frame-work and Pb, Sr Isotope Geochemistry of the Qingchengzi Pb-Zn-Ag-Au Orefield, Northeastern China[J]. Ore Geology Reviews, 2009, 35(3):367-382.
[8] 马玉波, 邢树文, 张增杰, 等. 辽宁青城子榛子沟脉状铅锌矿成矿流体地球化学初探[J]. 矿床地质, 2012, 31(3):569-578. Ma Yubo, Xing Shuwen, Zhang Zengjie, et al. Preliminary Study of Geochemical Characteristics if Ore-Forming Fluid in Zhenzigou Veined Pb-Zn Deposit,Qingchengzi,Liaoning Province[J].Mineral Deposits,2012,31(3):569-578.
[9] 段晓侠, 刘建明, 王永彬, 等. 辽宁青城子铅锌多金属矿田晚三叠世岩浆岩年代学、地球化学及地质意义[J]. 岩石学报, 2012, 28(2):595-606. Duan Xiaoxia, Liu Jianming, Wang Yongbin,et al.Geochronology,Geochemistry and Geological Significance of Late Triassic Magmatism in Qingchengzi Orefield,Liaoning[J]. Acta Petrologica Sinica, 2012,28(2):595-606.
[10] Li S Z, Zhao G C, Santosh M, et al. Palaeoprote-rozoic Tectonothermal Evolution and Deep Crustal Processes in the Jiao-Liao-Ji Belt, North China Craton:A Review[J]. Geological Journal, 2011, 46(6):525-543.
[11] 李三忠, 韩宗珠, 刘永江, 等. 辽河群区域变质特征及其大陆动力学意义[J]. 地质论评, 2001, 47(1):9-18. Li Sanzhong, Han Zongzhu, Liu Yongjiang, et al. Continental Dynamics and Regional Metamorphism of the Liaohe Group[J]. Geological Review, 2001, 47(1):9-18.
[12] 李三忠, 韩宗珠, 刘永江, 等. 胶辽地块古元古代前造山期深部过程的地质与地球化学制约[J]. 地质科学, 2001, 36(2):184-194. Li Sanzhong, Han Zongzhu, Liu Yongjiang, et al. Constraints of Geology and Geochemistry on Palaeoproterozoic Pre-Orogenic Deep Processes in Jiao-Liao Massif[J]. Scientia Geologica Sinica, 2001,36(2):184-194.
[13] 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3):305-317. Wu Fuyuan, Yang Jinhui, Liu Xiaoming. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China[J]. Geological Journal of China Universities, 2005,11(3):305-317.
[14] Hönig S, Leichmann J, Novak M. Unidirectional So-lidification Textures and Garnet Layering in V-Enriched Garnet-Bearing Aplite-Pegmatites in the Cadomian Brno Batholith, Czech Republic[J]. Journal of Geosciences, 2010, 55(2):113-129.
[15] Shannon J, Walker B, Carten R, et al. Unidirectional Solidification Textures and Their Significance in Determining Relative Ages of Intrusions at the Henderson Mine, Colorado[J]. Geology, 1982, 10(6):293-297.
[16] Betsi T B, Lentz D R. The Nature of "Quartz Eyes" Hosted by Dykes Associated with Au-Bi-As-Cu, Mo-Cu, and Base-Metal-Au-Ag Mineral Occurrences in the Mountain Freegold Region (Dawson Range), Yukon, Canada[J]. Journal of Geosciences, 2010, 55(4):347-368.
[17] Chang Z, Meinert L. The Magmatic-Hydrothermal Transition-Evidence from Quartz Phenocryst Textures and Endoskarn Abundance in Cu-Zn Skarns at the Empire Mine, Idaho, USA[J]. Chemical Geology, 2004, 210(1):149-171.
[18] Carten R B, Geraghty E P, Walker B M, et al. Cyclic Development of Igneous Features and Their Relationship to High-Temperature Hydrothermal Features in the Henderson Porphyry Molybdenum Deposit, Colorado[J]. Economic Geology, 1988, 83(2):266-296.
[19] Steele-Macinnis M, Lecumberri-Sanchez P, Bodnar R J. HOKIEFLINCS H2O-NaCl:A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O-NaCl[J]. Computers & Geosciences, 2012, 49:334-337.
[20] Mao S, Zhang D, Li Y, et al. An Improved Model for Calculating CO2 Solubility in Aqueous NaCl Solutions and the Application to CO2-H2O-NaCl Fluid Inclusions[J]. Chemical Geology, 2013, 347:43-58.
[21] Mao S, Duan Z, Hu J, et al. A Model for Single-Phase PVTx Properties of CO2-CH4-C2H6-N2-H2O-NaCl Fluid Mixtures from 273 to 1273 K and from 1 to 5000 bar[J]. Chemical Geology, 2010, 275(3/4):148-160.
[22] Touret J. Equation of State of CO2:Application to Cabonic Inclusions[J]. Bull Mineral, 1979, 102(5/6):577-583.
[23] Bakker R, Diamond L. Determination of the Compo-sition and Molar Volume of H2O-CO2 Fluid Inclusions by Microthermometry[J]. Geochimica et Cosmochimica Acta, 2000, 64(10):1753-1764.
[24] Anderson A J, Bodnar R J. An Adaptation of the Spindle Stage for Geometric Analysis of Fluid Inclusions[J]. Am Mineral, 1993, 78(5/6):657-664.
[25] Roedder E. Fluid Inclusions[J]. Reviews in Minera-logy, 1984, 12(6):71-77.
[26] Duan Z, Sun R, Zhu C, et al. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl and SO42-[J]. Marine Chemistry, 2006, 98(2/3/4):131-139.
[27] Frezzotti M L, Tecce F, Casagli A. Raman Spect-roscopy for Fluid Inclusion Analysis[J]. Journal of Geochemical Exploration, 2012, 112:1-20.
[28] 张荣臻, 张德会, 李建康, 等. 河南省栾川县石窑沟钼矿床地质特征和流体包裹体研究[J]. 矿物岩石地球化学通报, 2015, 34(1):167-176. Zhang Rongzhen,Zhang Dehui,Li Jiankang,et al. Study on Geology and Fluid Inclusions of the Shiyaogou Molybdenum Deposit,Luanchuan Country,Henan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(1):167-176.
[29] Bai T B, Koster Van Groos A F. The Distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce Between Granitic Melts and Coexisting Aqueous Fluids[J]. Geochimica et Cosmochimica, 1999, 63(7):1117-1131.
[30] Phillips G, Evans K. Role of CO2 in the Formation of Gold Deposits[J]. Nature, 2004, 429(6994):860-863.
[31] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011,27(5):1253-1261. Lu Huanzhang. FluidsImmiscibility and Fluid Inclusions[J]. Acta Petrologica Sinica, 2011,27(5):1253-1261.
[32] 和成忠, 王斌, 赵博, 等. 钼在岩浆-热液过程中的地球化学行为[J].矿物岩石地球化学通报, 2015, 34(1):208-215. He Chengzhong, Wang Bin, Zhao Bo, et al. Geochemical Behaviors of Molybdenum in the Magmatic-Hydrothermal Process[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(1):208-215.
[33] Minubayeva Z, Seward T M. Molybdic acid Ionisation Under Hydrothermal Conditions to 300℃[J]. Geochimica et Cosmochimica Acta, 2010, 74(15):4365-4374.
[34] Kudrin A V. Behavior of Mo in Aqueous NaCl and KCl Solutions at 300-450℃[J]. Geokhimiya, 1989,26:99-112.
[35] Ulrich T, Mavrogenes J. An Experimental Study of the Solubility of Molybdenum in H2O and KCl-H2O Solutions from 500℃ to 800℃, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 2008, 72(9):2316-2330.
[36] Zajaca Z, E. Halter W, Pettke T, et al. Determi-nation of Fluid/Melt Partition Coefficients by LA-ICPMS Analysis of Co-Existing Fluid and Silicate Melt Inclusions:Controls on Element Partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8):2169-2197.
[37] Keppler H J, Wyllie P. Partitioning of Cu, Sn, Mo, W, U, and Th Between Melt and Aqueous Fluid in the Systems Haplogranite-H2O-HCl and Haplogranite-H2O-HF[J]. Contrib Mineral Petrol, 1991, 109(2):139-150.
[38] Candela P A, Holland H D. The Partitioning of Co-pper and Molybdenum Silicate Melts and Aqueous Fluids Between Silicate Melts and Aqueous Fluids[J]. Geochwntca et Cosmochimicu Acta, 1984, 48(2):373-380.
[39] 孙燕, 刘建明, 曾庆栋. 斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响[J]. 地学前缘, 2012, 19(6):179-193. Sun Yan, Liu Jianming, Zeng Qingdong. An Approach to the Metallogenic Mechanism of Porphyry Copper(Molybdenum) Deposits and Pophyry Molybdenum(Copper) Seposits:Influence of Evolving Processes of Pre-Forming Fluids and Tectonic Settings[J].Earth Science Frontiers, 2012, 19(6):179-193.
[40] Robb L. Introduction to Ore-Forming Processes[M]. Maladen,MA:Blackwell Science Ltd, 2005.
[41] Li N, Ulrich T, Chen Y J, et al. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China[J]. Ore Geology Reviews, 2012, 48:442-459.
[42] Rempel K U, Williams-Jones A E, Migdisov A A. The Partitioning of Molybdenum (VI) Between Aqueous Liquid and Vapour at Temperatures up to 370℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(11):3381-3392.
[43] Rempel K U, Williams-Jones A E, Migdisov A A. The Solubility of Molybdenum Dioxide and Trioxide in HCl-Bearing Water Vapour at 350℃ and Pressures up to 160 bars[J]. Geochimica et Cosmochimica Acta, 2008, 72(13):3074-3083.
[44] Rempel K U, Migdisov A A, Williams-Jones A E. The Solubility and Speciation of Molybdenum in Water Vapour at Elevated Temperatures and Pressures:Implications for Ore Genesis[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):687-696.
[45] 张德会, 周圣华, 万天丰,等. 矿床形成深度与深部成矿预测[J]. 地质通报, 2007, 26(12):1509-1518. Zhang Dehui,Zhou Shenghua,Wan Tianfeng,et al. Depth of Ore Deposit Formation and Prognosis of Deep-Seated Ore Deposits[J].Geological Bulletin of China,2007,26(12):1509-1518.
[46] Baker T. Emplacement Depth and Carbon Dioxide-Rich Fluid Inclusions in Intrusion-Related Gold Deposits[J]. Economic Geology, 2002, 97(5):1111-1117.
[47] Wilkinson J. Fluid Inclusions in Hydrothermal Ore Deposits[J]. Lithos, 2001, 55(1):229-272.
[48] Murakami H, Seo J H, Heinrich C A. The Relation Between Cu/Au Ratio and Formation Depth of Porphyry-Style Cu-Au±Mo Deposits[J]. Mineralium Deposita, 2010, 45(1):11-21.
[49] Tosdal R M, Dilles J H, Cooke D R. From Source to Sinks in Auriferous Magmatic-Hydrothermal Porphyry and Epithermal Deposits[J]. Elements, 2009, 5(5):289-295.
[50] Rusk B G, Reed M H. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte,Montana[J]. Economic Geology, 2008, 103(2):307-334.
[51] 刘利, 曾庆栋, 刘建明, 等. 内蒙古西拉木伦成矿带劳家沟斑岩型钼矿流体包裹体特征及地质意义[J]. 地质与勘探, 2012, 48(4):663-676. Liu Li,Zeng Qingdong,Liu Jianming,et al.Characteristics of Fluid Inclusions from the Laojiagou Porphyry Mo Deposit in the Xilamulun Metallogenic Belt,Inner Mongolia and Their Geological Significance[J].Geology and Exporation, 2012, 48(4):663-676.
[52] 刘翼飞, 聂凤军, 江思宏, 等. 内蒙古查干花钼矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2011, 41(6):1794-1805. Liu Yifei,Nie Fengjun, Jiang Sihong,et al.Ore-Forming Fluid Characteristics and Ore Genesis of Chaganhua Porphyry Molybdenum Deposit Central Inner Mongolia,China[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(6):1794-1805.
[53] 褚少雄, 曾庆栋, 刘建明, 等. 西拉沐伦钼矿带车户沟斑岩型钼-铜矿床成矿流体特征及其地质意义[J]. 岩石学报, 2010, 26(8):2465-2481. Chu Shaoxiong, Zeng Qingdong, Liu Jianming,et al. Characteristics and Its Geological Significance of Fluid Inclusions in Chehugou Porphyry Mo-Cu Deposit, Xilamulun Molybdenum Metallogenic Belt[J]. Acta Petrologica Sinica, 2010, 26(8):2465-2481.
[54] 代军治. 燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景[D]. 北京:中国地质科学院, 2008. Dai Junzhi.The Metallogeneses and Geodynamic Settings of Molybdenum(Copper) Deposits in Yan-Liao Metallogenic Belt[D]. Beijing:Chinese Academy of Geological Sciences,2008.
[1] Li Xiangwen, Zhang Zhiguo, Wang Keyong, Sun Jiapeng, Yang Jibo, Yang He. Characteristics of Ore-Forming Fluid and Genesis of Baoxinggou Gold Deposit in North of Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1071-1084.
[2] Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651.
[3] Chen Ruili, Chen Zhengle, Wu Junjie, Liang Zhilu, Han Fengbin, Wang Yong, Xiao Changhao, Wei Liangxi, Shen Tao. Fluid Inclusions and S-Pb Isotopes in Zaozigou Gold Deposit, Hezuo in Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 87-104.
[4] Men Lanjing, Sun Jinggui, Wang Haojun, Chai Peng, Zhao Keqiang, Gu Alei, Liu Chengxian. Origin and Evolution of Ore-Forming Fluids of Duhuangling and Jiusangou High-Sulfidation Gold Deposit in Yanbian [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1365-1382.
[5] Chen Jingyuan, Wang Changming, He Xinyu, Chen Liang, Wu Bin, Wang Qiao, Zhang Duan, Yao Enya, Dong Mengmeng. Characteristics of Geology, Fluid Inclusions and Stable Isotope of Wafang Pb-Zn Deposit in Henan [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1383-1404.
[6] Zhang Yan, Han Runsheng, Wei Pingtang, Qiu Wenlong. Fluid Inclusion Features and Physicochemical Conditions of the Kuangshanchang Pb-Zn Deposit, Huize, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 719-733.
[7] Zhao Yande, Qi Yalin, Luo Anxiang, Cheng Dangxing, Li Jihong, Huang Jinxiu. Application of Fluid Inclusions and Dating of Authigenic Illite in Reconstruction Jurassic Reservoirs Hydrocarbon Filling History,Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1637-1648.
[8] Zhang Peng, Yang Hongzhi, Li Bin, Kou Linlin, Yang Fengchao. Ore Source, Ore-Forming Age and Geodynamic Setting of Yaojiagou Molybdenum Deposit in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1684-1696.
[9] Wang Li, Sun Liwei. Characteristics of Ore-Forming Fluid of the Sizhuang Gold Deposit in Shandong Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1697-1710.
[10] Zhang Yanjun, Sun Fengyue, Li Bile, Li Liang, Chen Yang. Fluid Inclusions Characteristecs and Ore Genesis of Sancha Gold Deposit in Huangzhong County, Qinghai Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1342-1353.
[11] Wang Xi, Duan Mingxin, Ren Yunsheng, Hou Zhaoshuo, Sun Deyou, Hao Yujie. Characteristics of Fluid Inclusions and Mineralization Age of Badaguan Cu-Mo Deposit in Erguna Area, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1354-1367.
[12] Wu Haizhi, Han Runsheng, Wu Peng. Properties and Evolution of Ore-Forming Fluid in Liuju Sandstone Type Copper Deposit, Chuxiong Basin in Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 398-411.
[13] Wang Keyong, Fu Lijuan, Wei Liemin, Wang Zhigao. Characteristics of Hydrothermal Superimposed Mineralization and Source of Ore-Forming Fluids in Zhenzigou Pb-Zn Deposit,Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 80-90.
[14] Han Runsheng, Li Bo, Ni Pei, Qiu Wenlong, Wang Xudong, Wang Tiangang. Infrared Micro-Thermometry of Fluid Inclusions in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 91-104.
[15] Zhang Zhihui, Zhang Da, Di Yongjun, Li Xingjian, Que Chaoyang, Ma Xianping, Du Zezhong. Characteristics of Fluid Inclusions and Primary Metallogenic Mechanism of Jiaochong Au-S Deposit in Tongling Area, Anhui [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1657-1666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!