Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (3): 800-814.doi: 10.13278/j.cnki.jjuese.20180236

Previous Articles    

Geochemistry and Geochronology of Ore-Bearing Formation in Jinan BIF-Type Iron Deposit in Helong Area, Jilin Province

Ren Yunsheng1, Liu Xiaohe1, Shang Qingqing1, Chen Cong2, Yang Qun1, Hao Yujie1, Sun Zhenming1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Shenyang Center, China Geological Survey, Shenyang 110034, China
  • Received:2018-09-09 Published:2020-05-29
  • Supported by:
    Supported by National Key Research and Development Program of China(2017YFC0601304)and National Key Basic Research and Development Program of China(2013CB429802)

Abstract: Jinan iron deposit is one of the BIF-type of deposits discovered early in the Northeast China, which is located in the north part of Longgang massif, at the joint of the North China craton and the Xing'an-Mongolia orogenic belt. The layered, stratified, and lenticular iron orebodies are mainly hosted within the metamorphic rocks of Jinan Formation, Anshan Group. The ore-bearing rocks mainly include biotite plagioclase gneiss, amphibole biotite plagioclase gneiss, biotite amphibole plagioclase gneiss, and amphibolite, which experienced amphibolite facies regional metamorphism. The ore types are mainly comprised of BIF-type and massive magnetite amphibolite type. To determine the tectonic setting of ore-bearing formation of Jinan deposit, the geochemical analysis and LA-ICP-MS were conducted for the intermediate-basic rocks. The geological and geochemical features, together with the protolith re-constrution diagrams, indicate that the protolith of the amphibolite is sub-alkaline basalt (tholeiite) formed in the back arc basin. The LA-ICP-MS zircon U-Pb dating of the amphibolite shows that the ages of two old metamorphic zircons are (2 468±15) and (2 469±9) Ma, representing the peak metamorphism age in this area (~2 460 Ma). The concentrated ages of 26 metamorphic zircons were (2 275±25) Ma, representing the retrograde metamorphic age in the area. A comprehensive comparison with the typical BIFs both at home and abroad indicates that Jinan and Guandi iron deposit in Helong area belongs to Algoma-type.

Key words: zircon U-Pb dating, geochemistry, ore-bearing formation, tectonic setting, BIF type iron deposit, Jinan iron deposit, Helong area

CLC Number: 

  • P597.3
[1] 孟洁,李厚民,李立兴,等. 华北克拉通南缘太华群铁山庙铁矿床沉积时代的约束:锆石U-Pb定年及Hf同位素证据[J]. 地质学报,2018,92(1):125-141. Meng Jie, Li Houmin, Li Lixing, et al. Depositional Time of the Tieshanmiao Iron Ore Deposit in the Taihua Complex, Southern Margin of the North China Craton:Constraint from Zircon U-Pb Dating and Hf Isotope Evidence[J]. Acta Geologica Sinica, 2018, 92(1):125-141.
[2] 沈保丰. 中国BIF型铁矿床地质特征和资源远景[J]. 地质学报,2012,86(9):1376-1395. Shen Baofeng. Geological Characters and Resource Prospect of the BIF Type Iron Ore Deposits in China[J]. Acta Geologica Sinica, 2012, 86(9):1376-1395.
[3] 刘利,张连昌,代堰锫.BIF成因研究进展[J]. 地质科学,2014,49(3):1018-1033. Liu Li, Zhang Lianchang, Dai Yanpei. Research Progress of BIF Genesis[J]. Chinese Journal of Geology, 2014, 49(3):1018-1033.
[4] 翟明国. 华北克拉通的形成以及早期板块构造[J]. 地质学报,2012,86(9):1335-1349. Zhai Mingguo. Evolution of the North China Craton and Early Plate Tectonics[J]. Acta Geologica Sinica, 2012, 86(9):1335-1349.
[5] 刘大为,王铭晗,刘素巧,等. 辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版),2017,47(3):694-705. Liu Dawei, Wang Minghan, Liu Suqiao, et al. Geochemical Characteristics and Genesis of Band Iron Formation in No.2 Mining Area of Gongchangling Iron Deposit, Liaoning Province[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3):694-705.
[6] 郑梦天,张连昌,王长乐,等. 冀东杏山BIF铁矿形成时代及成因探讨[J]. 岩石学报,2015,31(6):1636-1652. Zheng Mengtian, Zhang Lianchang, Wang Changle, et al. Formation Age and Origin of the Xingshan BIF Type Iron Deposit in Eastern Heibei Province[J]. Acta Petrologica Sinica,2015,31(6):1636-1652.
[7] 夏建明. 辽宁弓长岭BIF型铁矿田成矿环境与富铁矿床形成机制的研究[D]. 沈阳:东北大学,2013. Xia Jianming. The Study on Metallogenic Environment and High-Grade Iron Deposits Formation Mechanism of Gongchangling, Liaoning Provice[D]. Shenyang:Northeastern University, 2013.
[8] 张密刚,王雅平. 和龙市鸡南铁矿床地质特征及找矿标志[J]. 矿业论坛,2009,29:347-390. Zhang Migang, Wang Yaping. Geological Characteristics and Prospecting Sign of Jinan Iron Deposit in Helong City[J]. Mining Forum, 2009, 29:347-390.
[9] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.
[10] Qi L, Hu J, Gregoire D C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry[J]. Talanta, 2000, 51(3):507-513.
[11] 商青青,任云生,陈聪,等. 延边官地铁矿构造背景与和龙地块太古宙地壳增生:来自岩石地球化学、锆石U-Pb年代学及Hf同位素证据[J]. 地球科学,2017,42(12):2208-2228. Shang Qingqing, Ren Yunsheng, Chen Cong, et al. Tectonic Setting of Guandi Iron Deposit and Archean Crustal Growth of Helong Massif in NE China:Evidence from Petrogeochemisty, Zircon U-Pb Geochronology and Hf Isotope[J]. Journal of Earth Science, 2017, 42(12):2208-2228.
[12] 刘军, 靳淑韵. 辽宁弓长岭铁矿床斜长角闪岩类地球化学特征研究及原岩恢复[J]. 中国地质, 2010, 37(2):324-333. Liu Jun, Jin Shuyun. Study on the Geochemical Characteristics of Plagioclasite Amphibolite and the Restoration of Original Rock in Gongchangling Iron Deposit, Liaoning[J]. Geology in China, 2010, 37(2):324-333.
[13] Shaw D W. The Origin of the Apsley Gneiss, Ontario[J]. Canadian Journal of Earth Sciences, 1972, 9(1):18-35.
[14] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[15] Shaw D M, Kudo A M. A Test of the Discriminant Function in the Amphibolite Problem[J]. Mineralogical Magazine, 1965, 34:423-435.
[16] Wiedenbeck M, Alle P, Corfu F, et al. Three Nat,Ural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses[J]. Geostandards Newsletter, 1995, 19(1):1-23.
[17] Hu Z C, Gao S, Liu Y S, et al. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8):1093-1101.
[18] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[19] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
[20] 侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质,2009,28(4):481-492. Hou Kejun, Li Yanhe, Tian Yourong. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4):481-492.
[21] Andersen T, Griffin W L, Pearson N J. Crustal Evolution in the SW Part of the Baltic Shield:The Hf Isotope Evidence[J]. Journal of Petrology, 2002, 43(9):1725-1747.
[22] Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological, Toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center, 2003.
[23] 杨婧,王金荣,张旗,等. 全球岛弧玄武岩数据挖掘:在玄武岩判别图上的表现及初步解释[J]. 地质通报,2016,35(12):1937-1949. Yang Jing, Wang Jinrong, Zhang Qi, et al. Global IAB Data Excavation:The Perfor:Mance in Basalt Discrimination Diagrams and Preliminary Interpretation[J]. Geological Bulletin of China, 2016, 35(12):1937-1949
[24] 杨婧,王金荣,张旗,等. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展,2016,31(1):66-77. Yang Jing, Wang Jinrong, Zhang Qi, et al. Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB[J]. Advances in Earth Science, 2016, 31(1):66-77.
[25] 王金荣,陈万峰,张旗,等. N-MORB和E-MORB数据挖掘:玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报,2017,33(3):993-1005. Wang Jinrong, Chen Wanfeng, Zhang Qi, et al. Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source[J]. Acta Petrologica Sinica, 2017, 33(3):993-1005.
[26] 吴琼. 吉林和龙官地铁矿矿床地质特征及矿化富集规律[D]. 长春:吉林大学,2017. Wu Qiong. Study on the Geological Characteristics and Enrichment Regularities of Mineralization of Guandi Fe Deposit in Helong, Jilin Province[D]. Changchun:Jilin University, 2017.
[27] Wilde S A, Zhao G C, Sun M. Development of the North China Craton During the Late Archean and Its Final Amalgamation at 1.8 Ga:Some Speculations on Its Position Within a Global Paleoproterozoic Supercontinent[J]. Gondwana Research, 2002, 5:85-94.
[28] 翟明国,彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报,2007,23(11):2665-2682. Zhai Mingguo, Peng Peng. Paleoproterozoic Events in the North China Craton[J]. Acta Petrologica Sinica, 2007, 23(11):2665-2682.
[29] 阳琼艳. 华北克拉通前寒武纪地壳演化:来自岩石学、地球化学和地质年代学的证据[D]. 北京:中国地质大学(北京),2016:1-339. Yang Qiongyan. Precambrian Crustal Evolution in the North China Craton:An Integrated Petrological, Geochemical and Geochronological Study[D]. Beijing:China University of Geosciences(Beijing), 2016:1-339.
[30] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe:Some Examples from the Western Alps[M]. Berlin Heidelberg:Springer-Verlag, Germany, 2000.
[31] Möller A, O'Brien P J, Kennedy A, et al. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry:An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway)[J]. EMU Notes in Mineralogy, 2003, 5:65-82.
[32] Simonen A. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland[J]. Bulletin of the Geological Society of Finland, 1953, 160:1-64.
[33] Tarney J. Geochemistry of Archaean High-Grade Gneisses, with Implications as to Origin and Evolution of the Precambrian Crust[M]. London:Wiley Publishing, 1976.
[34] Walker K R, Joplin G A, Lovering J F, et al. Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland[J]. Journal of the Geological Society of Australia, 1959, 6(2):149-177.
[35] 王仁民,贺高品,陈珍珍. 变质岩原岩图解判别法[M].北京:地质出版社,1987. Wang Renmin, He Gaopin, Chen Zhenzhen. Diagrammatic Identification of Metamorphic Rockst[M]. Beijing:Geological Publishing House, 1987.
[36] Winchester J A,Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J]. Chemical Geology, 1977, 20:325-343.
[37] 刘明军,李厚民,薛春纪,等. 辽宁弓长岭铁矿床二矿区矿石及类矽卡岩的地球化学特征及其找矿意义[J]. 地质学报,2014, 88(10):1889-1903. Liu Mingjun, Li Houmin, Xue Chunji, et al. The Geochemical Characteristics of Ore and Skark-Like Rocks in the Second Ore District of Gongchangling Iron Deposit Liaoning Province and Their Significance in Prospecting for Ore[J]. Acta Geologica Sinica, 2014, 88(10):1889-1903.
[38] 李厚民,刘明军,李立兴,等. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 岩石学报,2014,30(5):1205-1217. Li Houmin, Liu Mingjun, Li Lixing,et al. SHRIMP U-Pb Geochronology of Zircons from the Garnet-Rich Altered Rocks in the Mining Area II of the Gongchangling Iron Deposit:Constraints on the Ages of the High-Grade Iron Deposit[J]. Acta Petrologica Sinica, 2014, 30(5):1205-1217.
[39] 李志红,朱祥坤,唐索寒. 鞍山-本溪地区条带状铁矿的Fe同位素特征及其对成矿机理和地球早期海洋环境的制约[J].岩石学报,2012,28(11):3545-3558. Li Zhihong, Zhu Xiangkun, Tang Suohan. Fe Isotope Compositions of Banded Iron Formation from Anshan-Benxi Area:Constraints on the Formation Mechanism and Archean Ocean Environment[J]. Acta Petrologica Sinica, 2012, 28(11):3545-3558.
[40] 张朋. 鞍本地区鞍山群茨沟岩组斜长角闪岩地球化学特征及其地质意义[C]//第一届全国青年地质大会论文集. 北京:中国地质学会青年工作委员会,2013:2. Zhang Peng. The Geochemical Characteristics and Geological Significance of the Plagioamphibolite in the Zigou Formation of Anshan Group in this Area[C]//Proceedings of the First National Geological Youth Congress. Beijing:Youth Working Committee of Geological Society of China, 2013:2.
[41] Gross G A. A Classification of Iron Formations Based on Depositional Envionments[J]. Canadian Mineralogist, 1980, 18(2):215-222.
[42] Gross G A. Tectonic Systems and the Deposition of Iron-Formation[J]. Precambrian Research, 1983, 20(2/3/4):171-187.
[43] 卢秀全,薛世远,王堆珍. 吉林和龙太古代铁矿床地质特征、矿化类型及形成环境[J].吉林地质,2014,33(1):68-72. Lu Xiuquan, Xue Shiyuan, Wang Duizhen. Geological Features, Mineralization Type and Forming Environment of Helong Archaean Iron Deposit in Jilin Province[J]. Jilin Geology, 2014, 33(1):68-72.
[44] Gourcerol B. Results of LA-ICP-MS Sulfide Mapping from Algoma-Type BIF Gold Systems with Implications for the Nature of Mineralizing Fluids, Metal Sources, and Deposit Models[J]. Mineralium Deposita, 2018, 53:871-894.
[45] Taner M F, Chemam M. Algoma-Type Banded Iron Formation (BIF), Abitibi Greenstone Belt, Quebec, Canada[J]. Ore Geology Reviews, 2015, 70:31-46.
[46] Alicja Wudarska. Halogen Chemistry and Hydrogen Isotopes of Apatite from the > 3.7 Ga Isua Supracrustal Belt, SW Greenland[J]. Precambrian Research, 2018, 310:153-164.
[47] Kazumi Yoshiya. In-Situ Iron Isotope Analysis of Pyrites in~3.7 Ga Sedimentary Protoliths from the Isua Supracrustal Belt, Southern West Greenland[J]. Chemical Geology, 2015, 401:126-139.
[48] Gill R. Igneous Rocks and Processes:A Practical Guide[M]. Wiley-Blackwell, Chichester:Blackwell Publishing Ltd, 2010.
[49] Pearce J A,Cann J R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300.
[50] Pearce J A,Norry M J. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1):33-47. doi:10.1007/BF00375192.
[51] Fretzdorff S, Livermore R A, Devey C W, et al. Petrogenesis of the Back-Arc East Scotia Ridge, South Atlantic Ocean[J]. Journal of Petrology, 2002, 43(8):1435-1467.
[52] Taylor B,Martinez F. Back-Arc Basin Basalt Systematics[J]. Earth and Planetary Science Letters, 2003, 210(3/4):481-497.
[53] 刘锦,刘正宏,赵辰,等. 辽宁清河断裂以北新太古代变质表壳岩的发现及其地质意义[J]. 吉林大学学报(地球科学版),2017,47(2):497-510. Liu Jin, Liu Zhenghong, Zhao Chen, et al. Discovery of the Late Archean Supracrustal Rock to the North of Qinghe Fault in Liaoning Province and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):497-510.
[1] Zhang Jian, Zhang Haihua, Chen Shuwang, Zheng Yuejuan, Zhang Dejun, Su Fei, Huang Xin. Geochemical Characteristics and Geological Significance of Upper Permian Linxi Formation in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 518-530.
[2] Chen Huijun, Yu Hongbin, Ma Yongfei, Chen Jingsheng, Qian Cheng, Liu Shiwei, Cui Tianri, Zhong Hui. Zircon U-Pb Age, Petrological Geochemistry and Tectonic Implication of Alkaline Granitein South-Eastern Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 531-541.
[3] Meng Qingtao, Li Jinguo, Liu Zhaojun, Hu Fei, Xu Chuan. Organic Geochemical Characteristics and Depositional Environment of Oil Shale of Eocene of Paleocene Youganwo Formation in Yangjiao Mining Area of Maoming Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 356-367.
[4] Song Yu, Liu Zhaojun, Achim Bechtel, Xu Yinbo, Meng Qingtao, Sun Pingchang, Zhu Kai. Controlling Factors of Oil Shale and Coal Oil Yield in Lower Cretaceous Muling Formation in Laoheishan Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 378-391.
[5] He Zhonghua, Wang Qizhi, Wang Qiang. Geochemistry and Zircon U-Pb Ages of Clastic Rocks of Zhesi Formation in Suolun Region, Great Xing’an Range: Constraints on Origins of Sediment Provenance [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 405-424.
[6] Xu Jinjun, Li Ning, Jin Qiang, Liu Jihua, Lou Da, Teng Jiancheng. Geochemical Characteristics and Source Analysis of Carboniferous-Permian Condensate Oil and Gas in Huanghua Depression [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 644-652.
[7] Zhang Shuyi. Geochronology and Geochemistry of Volcanic Rocks in Tamulangou Formation from New Barag Right Banner, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 129-138.
[8] Xu Zhongjie, Kong Jintao, Cheng Rihui, Li Shuanglin, Kong Yuan, Yu Zhenfeng. Geochemical and Carbon and Oxygen Isotope Records of Relative Sea-Level Change of Mufushan Formation in Early Cambrian in Nanjing, Lower Yangtze Region [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 158-169.
[9] Lei Ruxiong, Zhao Tongyang, Li Ping, Dong Lianhui, Li Jihong, Wu Changzhi. H-O-S-Pb Isotopic Geochemistry of Dapinggou Gold Deposit in Northern Altun and Its Implications for Ore Genesis [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1578-1590.
[10] Cheng Long, Ding Qingfeng, Deng Yuanliang, Song Kai, Zhang Qiang. Petrogenesis of Middle Triassic Diabase Veins in Wulonggou Ore Concentrated Areas Within East Kunlun Orogen: Chronology, Geochemistry and Tectonic Significance [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1628-1648.
[11] Shi Lei, Zhou Xiwen, Zheng Changqing, Dong Yunfeng, Zhou Xiao, Guo Tengda. Indosinian Metamorphic Deformation Sequence of Badu Group in Suichang-Dazhe Region,Southwestern Zhejiang [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1658-1671.
[12] Zeng Wenren, Meng Qingtao, Liu Zhaojun, Xu Yinbo, Sun Pingchang, Wang Kebing. Organic Geochemical Characteristics and Paleo-Lake Conditions of Oil Shale of Middle Jurassic Shimengou Formation in Tuanyushan Area of Northern Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1270-1284.
[13] Chen Qingsong, Yang Runbai, Liu Demin, Tao Lanchu. Petrogenesis and Sedimentary Environment of Cherts of Dengying Formation in Huize County, Northeastern Yunnan: Evidence from Petrology and Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1327-1337.
[14] Niu Haiqing, Han Xiaofeng, Xiao Bo, Wei Jianshe, Zhang Huiyuan, Wang Baowen. Evaluation of Hydrocarbon Generation and Geochemical Characteristics of Coal-Measure Source Rocks,Zhongkouzi Basin in Beishan Area [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 970-981.
[15] Zhou Xiang. Geochemistry and Tectonic Implication of Volcanic Rocks of Yingcheng Formation in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1001-1014.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!