Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (1): 294-303.doi: 10.13278/j.cnki.jjuese.20190021

Previous Articles    

Finite Difference Forward Modeling of Surface Waves Based on MPI

Shao Guangzhou1, Zhao Kaipeng1, Wu Hua2   

  1. 1. School of Geological and Surveying Engineering, Chang'an University, Xi'an 710054, China;
    2. School of Science, Chang'an University, Xi'an 710064, China
  • Received:2019-01-29 Published:2020-02-11
  • Supported by:
    Supported by National Natural Science Foundation of China (41874123,41004043), Shaanxi National Natural Science Foundation (2016JM4003) and Fundamental Research Funds for the Central Universities, CHD (300102268402)

Abstract: In recent years, the technology of Rayleigh-waveform inversion is highly valued by scholars, because the wave field is calculated and inverted directly without the calculation of conventional dispersion curves. In other words, the waveform inversion method is no longer limited by the theoretical assumption of horizontal layered media. Rayleigh waveform inversion requires repeated forward and inverse calculations of wave field; in addition, due to the small velocity of the shallow surface, the simulation requires a small grid space to avoid numerical dispersion, which undoubtedly greatly increases the forward modeling calculation amount. Based on the idea of message passing interface (MPI) method, we applied a parallel finite-difference algorithm to wave field simulation to improve the computation efficiency of the forward modeling. Firstly, the whole calculation region was decomposed into several sub-regions; and then, the wave field was computed for each sub-region; finally, the whole wave field was completed together by communicating among sub-regions. In this paper, the detailed implementation methods and steps of the parallel schemes, such as region decomposition, coordinate transformation, region communication, and wave field combination and so on, are given. The analyzing results of the different parallel schemes in elastic model, Kelvin and standard linear solid (SLS) viscoelastic model show that our parallel scheme is feasible and effective. The parallel computation results indicate that multiple processors can significantly reduce the computing time compared with a single processor; however, the communication time between different processors also increases. It is necessary to select the appropriate number of processors in the parallel process. For viscoelastic medium model, the parallel computation efficiency of SLS viscoelastic model is better than that of Kelvin viscoelastic model.

Key words: MPI, high-order staggered-grid, finite-difference, image-method, CPML, region decomposition

CLC Number: 

  • P631.4
[1] 吴华,李庆春,邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6):1103-1111. Wu Hua, Li Qingchun, Shao Guangzhou. Development Status and Prospect of Rayleigh Waveform Inversion[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111.
[2] Tarantola A. Inversion of Seismic Reflection Data in the Acoustic Approximation[J]. Geophysics, 1984(49):1259-1266.
[3] Haskell N A. The Dispersion of Surface Waves on Multilayered Media[J]. Bulletin of the Seismological Society of America, 1953, 43(1):17-34.
[4] Schwab F. Surface Wave Dispersion Computation:Knopoff's Method[J]. Bulletin of the Seismological Society of America, 1970, 60(5):1491-1520.
[5] Carcione J M, Herman J C, Kroode A P E. Seismic Modeling[J]. Geophysics, 2002, 67(4):1304-1325.
[6] 裴正林,牟永光. 地震波传播数值模拟[J]. 地球物理学进展, 2004, 19(4):933-941. Pei Zhenglin, Mou Yongguang. Numerical Simulation of Seismic Wave Propagation[J]. Progress in Geophysics, 2004, 19(4):933-941.
[7] Virieux J. P-SV Wave Propagation in Heterogeneous Media:Velocity-Stress Finite-Difference Method[J]. Geophysics, 1986, 51(4):889-901.
[8] Levander A R. Fourth-Order Finite-Difference P-SV Seismograms[J]. Geophysics, 1988, 53(11):1425-1436.
[9] Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
[10] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):294-307.
[11] Johan O A R, Joakim O B, William W S. Viscoelastic Finite-Difference Modeling[J]. Geophysics, 1994, 59(9):1444-1456.
[12] Zahradnık J, Priolo E. Heterogeneous Formulations of Elastodynamic Equations and Finite Difference Schemes[J]. Geophys J Int, 1995, 120(3):663-676.
[13] Bohlen T, Saenger E H. Accuracy of Heterogeneous Staggered-Grid Finite-Difference Modeling of Rayleigh Waves[J]. Geophysics, 2006, 71(4):T109-T115.
[14] Robertsson O A J. A Numerical Free-Surface Condition for Elastic/Viscoelastic Finite-Difference Modeling in the Presence of Topography[J]. Geophysics, 1996, 61(6):1921-1934.
[15] Rune M. Free-Surface Boundary Conditions for Elastic Staggered-Grid Modeling Schemes[J]. Geophysics, 2002, 67(5):1616-1623.
[16] 周竹生,刘喜亮,熊孝雨. 弹性介质中瑞雷面波有限差分法正演模拟[J]. 地球物理学报, 2007, 50(2):567-573. Zhou Zhusheng, Liu Xiliang, Xiong Xiaoyu. Finite Difference Modeling of Rayleigh Surface Wave in Elastic Media[J]. Chinese Journal of Geophysics, 2007, 50(2):567-573.
[17] Thomas B, Tobias M M, Bernd M. Parallel Finite-Difference Modeling of Seismic Wave Scattering in 3-D Elastic Random Media[C]//SEG Technical Program Expanded Abstracts 2001. Tulsa:SEG, 2001:1147-1150.
[18] Felix R, Mauricio H, Albert F, et al. Generalized Elastic Staggered Grids on Multi-GPU Platforms[C]//SEG Technical Program Expanded Abstracts 2012. Tulsa:SEG, 2012:1-5.
[19] Liu Xiaobo, Chen Jingyi, Lan Haiqiang, et al. Numerical Modeling of Wave Propagation with an Irregular Free Surface and Graphic Processing Unit (GPU) Implementation[C]//SEG Technical Program Expanded Abstracts 2015. Tulsa:SEG, 2015:3704-3709.
[20] 周洲. 基于多线程并行计算的有限差分法弹性波数值模拟[J]. 硅谷, 2015, 4:76. Zhou Zhou. Numerical Simulation of Elastic Waves Using Finite Difference Method Based on Multithread Parallel Computation[J]. Silicon Valley, 2015, 4:76.
[21] 张明财,熊章强,张大洲. 基于MPI的三维瑞雷面波有限差分并行模拟[J]. 石油物探, 2013, 52(4):354-362. Zhang Mingcai, Xiong Zhangqiang, Zhang Dazhou. Finite Difference Parallel Simulation of 3D Rayleigh Surface Wave Based on MPI[J]. Geophysical Prospecting for Petroleum, 2013, 52(4):354-362.
[22] 钟飞, 张伟, 焦标强,等. 可控震源粘弹性波动方程有限差分模拟[J]. 煤田地质与勘探, 2011, 39(2):57-65. Zhong Fei, Zhang Wei, Jiao Biaoqiang, et al. Finite Difference Simulation of Viscoelastic Wave Equation in Vibroseis[J]. Coal Geology & Exploration, 2011, 39(2):57-65.
[23] Foster I. Designing and Building Parallel Programs:Concepts and Tools for Parallel Software Engineering[M]. New Jersey:Addison-Wesley, 1995.
[24] 杨庆节,刘财,耿美霞,等.交错网格任意阶导数有限差分格式及差分系数推导[J]. 吉林大学学报(地球科学版), 2014, 44(1):375-385. Yang Qingjie, Liu Cai, Geng Meixia, et al. Staggered Grid Finite Difference Scheme and Coefficients Deduction of Any Number of Derivatives[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1):375-385.
[25] 崔永福, 李国发, 吴国忱, 等. 基于面波模拟和曲波变换的去噪技术[J]. 吉林大学学报(地球科学版), 2016, 46(3):911-919. Cui Yongfu, Li Guofa, Wu Guochen, et al. Seismic Denoising Technique Based on Surface Wave Modeling and Curvelet Transform[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):911-919.
[26] Roden J A, Gedney S D. Convolutional PML(CPML):An Efficient FDTD Implementation of the CFS_PML for Arbitrary Media[J]. Microwave and Optical Technology Letters, 2000, 27(5):334-339.
[27] Damir P, Ray M. Convolutional Perfectly Matched Layer for Isotropic and Anisotropic Acoustic Wave Equations[C]//SEG Technical Program Expanded Abstracts 2010. Tulsa:SEG, 2010:2925-2929.
[1] Hu Gaojian, Yang Tianhong, Zhang Fei. Failure Mechanism and Internal Dumping Control Measures of South Slope in Fushun West Open-Pit Coal Mine [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1082-1092.
[2] Liang Shengxian. A Self-Constrained 3D Inversion and Efficient Solution of Gravity Data Based on Cross-Correlation Coefficient [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1473-1482.
[3] Li Dajun, Weng Aihua, Yang Yue, Li Sirui, Li Jianping, Li Shiwen. Three-Dimension Forward Modeling and Characteristics for Surface-Borehole Transient Electromagnetic by Using Staggered-Grid Finite Difference Method [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1552-1561.
[4] Zhang Xuebing, Liu Cai, Liu Yang, Wang Dian, Gou Fuyan. Seismic Data Time-Frequency Decomposition Based on Local Mean Decomposition [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1562-1571.
[5] Cai Jianhua, Xiao Xiao. De-Noising of Magnetotelluric Signal in the Ore Concentration Area Based on Combination Filter [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 874-883.
[6] Qin Xiwen, Liu Yuanyuan, Wang Xinmin, Dong Xiaogang, Zhang Yu, Zhou Hongmei. PM2.5 Prediction of Beijing City Based on Ensemble Empirical Mode Decomposition and Support Vector Regression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 563-568.
[7] Ben Fang, Liu Yunhe, Huang Wei, Xu Chi. MCSEM Responses for Anisotropic Media in Shallow Water [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 581-593.
[8] Liu Xia, Huang Yang, Huang Jing, Duan Zhiwei. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD) [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 262-269.
[9] Shu Longcang, Fan Jianhui, Lu Chengpeng, Zhang Chunyan, Tang Ran. Hydrogeological Simulation Test of Fissure-Conduit Media in Springs Watershed [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 908-917.
[10] Wang Zhaoling, Liu Zhengping, Huang Yunyan, Huang Xianbin. Wavefield Modeling Based on the Finite Element Method for the Tunnel Seismic Prediction [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1369-1381.
[11] Kan Guangming, Su Yuanfeng, Liu Baohua, Li Guanbao, Meng Xiangmei. Properties of Acoustic Impedance of Seafloor Sediments in the Middle Area of the Southern Yellow Sea [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 386-395.
[12] Wang Zhenghai, Geng Xin, Yao Zhuosen, Hu Guangdao, Fang Chen. Like-Impulse Electromagnetic Noise Processing Based on Empirical Mode Decomposition [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 344-349.
[13] Lu Gongda, Yan Echuan, Wang Huanling, Wang Xueming, Xie Liangfu. Prediction on Uniaxial Compressive Strength of Carbonate Based on Geological Nature of Rock [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1915-1921.
[14] Liu Changjun, Zhao Hua, Zhang Shunfu, Ding Liuqian. Finite Element Analysis on Unsteady Seepage Field of Groundwater Reservoir of Tailan River During the Pumping Water of the Radiation Well [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 922-930.
[15] Zhang Yanqing, Yang Qingli, Gao Xiangyu. Analysis of Base Isolated Structure with Composite Friction Damping System [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 908-913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!