Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (4): 1029-1041.doi: 10.13278/j.cnki.jjuese.20190111

Previous Articles    

In Situ Analysis of Rare Earth Element Composition of Scheelite by LA-ICP-MS

Hao Yujie1,2, Shang Qingqing1, Ren Yunsheng1,2,3, Liu Xiaohe1, Chen Cong4   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China;
    3. Institute of Disaster Prevention, Beijing 101601, China;
    4. Shenyang Center, China Geological Survey, Shenyang 110034, China
  • Received:2019-05-16 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (41802078), National Key R & D Program of China (2017YFC0601304) and Self-Determined Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources (DBY-ZZ-18-05)

Abstract: Scheelite is a common accessory mineral in all kinds of deposits. The analysis of its rare earth element (REE) and the standardized distribution patterns can provide important discrimination basis for the evolution of ore-forming fluids. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) in situ analysis of REE in scheelite was conducted by taking the samples from the two typical deposits in Northeast China, Yangjingou hydrothermal vein deposit and Yangbishan Skarn deposit. The REE distribution curves obtained by LA-ICP-MS of Yangbishan scheelite is completely consistent with the results obtained by the traditional solution-ICP-MS analysis, which show that using 193 nm ArF laser with denudation frequency of 7 Hz and denudation spot of 44 μm, the NIST 610 as the external standard and Ca as the internal standard element, the method is proved to be feasible with the least effective matrix and the reliable obtained data. The results of Yangjingou scheelite solution-ICP-MS and LA-ICP-MS analysis have similarities and differences, while the REE distribution patterns in different mineral particles and different parts of the same mineral of Yangbishan scheelite is consistent. The result is that Yangbishan scheelite is of skarn-type with small size, and short-term formation; while Yangbishan scheelite is of hydrothermal vein type with large grain size, and long-term precipitation and crystallization. Based on the above comparative study, the LA-ICP-MS in situ analysis method has obvious advantages over traditional solution-ICP-MS analysis method, in aspect of sampling, testing process, and data accuracy. The advantages mainly display in that the simple sample form, low requirements in particle size and content, short test period, low cost, and high precision results, at the same time the contents of REE are obtained under the fine determination for different ore-forming stages or in a different part of scheelite, more detailed and accurate data information can be obtained at a higher spatial resolution. In addition, in the process of LA-ICP-MS in situ analysis of scheelite (especially those without obvious zonation), the content of Ca can be accurately determined by electron probe microanalysis (EPMA) or directly calculated by standard chemical formula. The data obtained from the analysis also can be reasonably geologically interpreted.

Key words: the scheelite, rare-earth element, LA-ICP-MS, Yangbishan Skarn deposit, Yangjingou hydrothermal vein deposit

CLC Number: 

  • P597
[1] Beran A, Gatzinger M, Zemann J. A Scheelite Mineralization in Calc-Silicate Rocks of the Moldanubicum (Bohemian Massif) in Austria[J]. Mineralium Deposita, 1985, 20:16-22.
[2] 任云生,赵华雷,雷恩,等. 延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征与矿床成因[J]. 岩石学报,2010,26(12):3720-3726. Ren Yunsheng, Zhao Hualei, Lei En, et al. Trace Elementand Rare Earth Element Geochemistry of the Scheelite and Ore Genesis of the Yangjingou Large Scheelite Deposit in Yanbian Area, Northeastern China[J]. Acta Petrologica Sinica, 2010, 26(12):3720-3726.
[3] 赵华雷. 吉黑东部钨矿成因及成矿地球动力学背景[D]. 长春:吉林大学,2014. Zhao Hualei. Ore Genesis and Geodynamic Settings of Tungsten Deposits in Eastern Jilin and Heilongjiang Provinces[D]. Changchun:Jilin University, 2014.
[4] Hao Y J, Ren Y S, Zhao H L, et al. Metallogenic Mechanism and Tectonic Setting of Tungsten Mineralization in the Yangbishan Deposit in Northeastern China[J]. Acta Geologica Sinica, 2018, 92(1):241-267.
[5] Brugger J, Maas R, Lahaye Y, et al. Origins of Nd-Sr-Pb Isotopic Variations in Single Scheelite Grains from Archaean Gold Deposits, Western Australia[J]. Chemical Geology, 2002, 182(2/3/4):203-225.
[6] 王晓地,汪雄武,孙传敏. 甘肃后长川钨矿白钨矿Sm-Nd定年及稀土元素地球化学[J]. 矿物岩石,2010,30(1):64-68. Wang Xiaodi, Wang Xiongwu, Sun Chuanmin. REE Geochemistry of Scheelite and Sm-Nd Dating for the Houchangchuan Scheelite Depositin Gansu[J]. Journal of Mineralogy and Petrology, 2010, 30(1):64-68.
[7] 熊德信,孙晓明,石贵勇,等. 云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J]. 岩石学报,2006,22(3):733-741. Xiong Dexin, Sun Xiaoming, Shi Guiyong, et al. Trace Elments, Rare Earth Elements (REE) and Nd-Sr Isotopic Compositions in Scheelites and Their Implications for the Mineralization in Daping Gold Mine in Yunnan Province, China[J]. Acta Petrologica Sinica, 2006, 22(3):733-741.
[8] Song G X, Qin K Z, Li G M, et al. Scheelite Elemental and Isotopic Signatures:Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China[J]. American Mineralogist, 2014, 99:303-317.
[9] 陈聪,任云生,赵华雷,等. 延边东部五道沟花岗闪长岩体的年代学与地球化学特征及其成矿意义[J]. 中南大学学报(自然科学版),2015,46(8):2962-2973. Chen Cong,Ren Yunsheng, Zhao Hualei, et al. Geochronology, Geochemistry and Metallogenic Significance of Wudaogou Granodiorite Intrusion in Eastern Yanbian, NE China[J]. Journal of Central South University (Science and Technology), 2015, 46(8):2962-2973.
[10] Ghaderi M, Palin J M, Campbell I H, et al. Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia[J]. Economic Geology, 1999, 94:423-438.
[11] Brugger J, Lahaye Y, Costa S, et al. Inhomogeneous Distribution of REE in Scheelites and the Dynamics of Archaean Hydrothermal Systems (Mt Charlotte and Drysdale Gold Deposits, Western Australia)[J]. Contributions Mineralogy Petrology, 2000, 139(3):251-264.
[12] 刘琰,邓军,李潮峰,等. 四川雪宝顶白钨矿稀土元素地球化学与Sm-Nd同位素定年[J]. 科学通报,2007,52(16):1923-1928. Liu Yan, Deng Jun, Li Chaofeng, et al. Geochemistry and Sm-Nd Isotope Dating of Rare Earth Elements in Xuebaoding Scheelite, Sichuan[J]. Chinese Science Bulletin, 2007, 52(16):1923-1928.
[13] 曾志刚,李朝阳,刘玉平,等. 滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J]. 地质地球化学,1998,26(2):34-38. Zeng Zhigang, Li Chaoyang, Liu Yuping, et al. REE Geochemistry of Scheelite of Two Genetic Types from Nanyangtian, Southeastern Yunnan[J]. Geology-Geochemistry, 1998, 26(2):34-38.
[14] 袁继海,詹秀春,孙冬阳,等. 激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J]. 分析化学研究报告,2011,39(10):1582-1588. Yuan Jihai, Zhan Xiuchun, Sun Dongyang, et al. Investigation on Matrix Effect of Silicate Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(10):1582-1588.
[15] 潘彦宁,董国臣,李雪峰,等. 滇西北斑岩铜矿带中黑云母矿物化学及其成岩成矿指示意义[J]. 地学前缘,2017,24(6):194-207. Pan Yanning, Dong Guochen, Li Xuefeng, et al. Biotite Mineral Chemistry and Their Implications for Petrogenesis and Mineralization in the Porphyry Copper Deposit Belt in Northwest Yunnan, China[J]. Earth Science Frontiers, 2017, 24(6):194-207.
[16] Zhang L, Ren Z Y, Wang C Y. Melt Inclusions in the Olivine from the Nantianwan Intrusion:Implications for the Parental Magma of Ni-Cu-(PGE) Sulfide-Bearing Mafic-Ultramafic Intrusions of the~260 Ma Emeishan Large Igneous Province (SW China)[J]. Journal of Asian Earth Sciences, 2017, 134:72-85.
[17] 蓝廷广,胡瑞忠,范宏瑞,等.流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J]. 岩石学报,2017,33(10):3239-3262. Lan Tingguang, Hu Ruizhong, Fan Hongrui, et al. In-Situ Analysis of Major and Trace Elements in Fluid Inclusion and Quartz:LA-ICP-MS Method and Applications to Ore Deposits[J]. Acta Petrologica Sinica, 2017, 33(10):3239-3262.
[18] 邹雷,刘平华,田忠华,等. 东阿拉善地块前寒武纪变质基底中晚古生代变质杂岩:来自波罗斯坦庙杂岩LA-ICP-MS锆石U-Pb定年的新证据[J]. 地球科学,2019,44(4):1406-1423. Zou Lei, Liu Pinghua, Tian Zhonghua, et al. Late Paleozoic Metamorphic Complex of Precambrian Metamorphic Basement from Eastern Alxa Block:New Evidence from Zircon LA-ICP-MS U-Pb Dating of Boluositanmiao Complex[J]. Earth Science, 2019, 44(4):1406-1423.
[19] Sylvester P J, Ghaderi M. Trace Element Analysis of Scheelite by Excimer Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (ELA-ICP-MS) Using a Synthetic Silicate Glass Standard[J]. Chemical Geology, 1997, 141:49-65.
[20] 彭建堂,张东亮,胡瑞忠,等.湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义[J]. 地质论评,2010,56(6):810-819. Peng Jiantang, Zhang Dongliang, Hu Ruizhong, et al. Inhomogeneous Distribution of Rare Earth Elements (REEs) in Scheelite from the Zhazixi W-Sb Deposit, Western Hunan and Its Geological Implications[J]. Geological Review, 2010, 56(6):810-819.
[21] 刘善宝,刘战庆,王成辉,等. 赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J]. 地学前缘,2017,24(5):19-30. Liu Shanbao, Liu Zhanqing, Wang Chenghui, et al. Geochemical Characteristics of REEs and Trace Elements and Sm-Nd Dating of Scheelite from the Zhuxi Giant Tungsten Deposit in Northeast Jiangxi[J]. Earth Science Frontiers, 2017, 24(5):19-30.
[22] 付宇,孙晓明,熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定[J]. 岩矿测试,2013,32(6):875-882. Fu Yu, Sun Xiaoming, Xiong Dexin. In-Situ Determination of Rare Earth Elements in Scheelite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6):875-882.
[23] 聂利青,周涛发,张千明,等. 安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J]. 岩石学报,2017,33(11):3518-3530. Nie Liqing, Zhou Taofa, Zhang Qianming, et al. Trace Elements and Sr-Nd Isotopes of Scheelites:Implications for the Skarn Tungsten Mineralization of the Donggushan Deposit, Anhui Province, China[J]. Acta Petrologica Sinica, 2017, 33(11):3518-3530.
[24] Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford:Blackwell Science Publisher, 1985.
[25] Jackson S E, Longerich H P, Dunning G R, et al. The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in Situ Trace-Element Determinations in Minerals[J]. Canadian Mineralogist, 1992, 30:1049-1064.
[26] Jackson S E, Günther D. The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(3):205-212.
[27] Fryer B J, Jackson S E, Longerich H P. The Design, Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J]. Canadian Mineralogist, 1995, 33:303-312.
[28] 孟郁苗,黄小文,高剑峰,等. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试,2016,35(6):585-594. Meng Yumiao, Huang Xiaowen, Gao Jianfeng, et al. Determination of Trace Elements in Magnetite by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards Without an Internal Standard Calibration[J]. Rock and Mineral Analysis, 2016, 35(6):585-594.
[1] Yang Fan, Wang Yan, Na Fuchao, Fu Junyu, Zhang Guangyu, Sun Wei, Pang Xuejiao, Chen Jingsheng, Liu Miao, Li Bin. Geological Significance and Metallogenic Epoch of the Baiyinnuoer Pb-Zn Deposit in Inner Mongolia: Constraints from Geochemistry and Chronology of Intrusive Rocks [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1696-1710.
[2] Wang Yun, Hu Baoqun, Wang Qian, Li Youguo, Sun Zhanxue, Guo Guolin. Occurrence Characteristics of HREE in Zoujiashan Uranium Deposit [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 719-735.
[3] Liu Jin, Liu Zhenghong, Zhao Chen, Peng Youbo, Wang Chujie, Yang Zhongjie, Dou Shiyong. Discovery of the Late Archean Supracrustal Rock to the North of Qinghe Fault in Liaoning Province and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 497-510.
[4] Sun Zhenjun, Sun Guosheng, Yu Henan, Xiang Zhu, Tian Yi, Liu Tong, Chen Xu, Li Yang. Chronology and Geochemical Characteristics of Zhuanshanzi Granite in Chifeng and Its Diagenetic Dynamics Background [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1740-1753.
[5] Zhang Peng, Yang Hongzhi, Li Bin, Kou Linlin, Yang Fengchao. Ore Source, Ore-Forming Age and Geodynamic Setting of Yaojiagou Molybdenum Deposit in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1684-1696.
[6] Chen Bin, Li Zhuang, Wang Jialin, Zhang Lu, Yan Xuelong. Liaodong Peninsula ~2.2 Ga Magmatic Event and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 303-320.
[7] Gao Fuhong, Wang Lei, Xu WenLiang, Wang Feng. Age and Provenance of the Late Paleozoic Strata in Lesser Xing'an Range: Evidence from Field Geology and Detrital Zircon U-Pb Ages [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 469-481.
[8] Tian Zhixian, Li Yongjun, Tian Meng, Yang Gaoxue, Xiang Kunpeng, Tong Lili. Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Volcanic Rocks of Haerjiawu Formation in Qiada, West Junggar [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 135-145.
[9] Qin Ya, Zhang Qingwei, Kang Zhiqiang, Li Saisai, Feng Zuohai, Yang Qijun, Pang Baocheng, Bai Ling'an, Xie Yongbin, Ye Ming. Geochronological Framework of Granitoids in Dayaoshan Metallogenic Belt,Eastern Guangxi Province [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1735-1756.
[10] Song Yue, Wang Jian, Liu Jinlin, Bao Zhenyan. Chronology, Geochemistry, Hafnium Isotope Characteristics and Tectonic Implications of Muztag-Kongur Indosinian Intrusive Rocks [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1418-1435.
[11] Nie Lijun, Yu Hongbin, Zhang Jianze, Wang Cong, Li Dong, Li Yang. Zircons LA-ICP-MS U-Pb Ages of the Lower Triassic Lujiatun Group and Its Geological Significance in Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 453-470.
[12] Li Fengxian, Bai Xinhui, Wan Le, Guan Qingbin, Li Pengchuan. Zircon LA-ICP-MS U-Pb Dating, Geochemistry of the Jibuhulengtu Garnet-Bearing Muscovite Granitic Pluton in Mongolia and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 429-440.
[13] Si Qiuliang, Cui Tianri, Tang Zhen, Li Wei, Wu Xinwei, Jiang Bin, Li Linchuan. Chronology,Geochemistry and Petrogenesis of the Volcanic Rocks in Manitu Formation in Chaihe Area, Central Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 389-403.
[14] Chen Jingsheng, Li Weiwei, Liu Miao, Xing Dehe, Yang Jialin. U-Pb Isotopic Age of the Volcanic Rocks of the Yixian Formation in Jianping Machang of Western Liaoning and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 471-482.
[15] Zhang Yong, Sun Jinggui, Xing Shuwen, Zhao Keqiang, Wang Yan, Qiu Dianming,Liu Siyu,Chen Ming. Diagenetic and Metallogenic Geochronology and Geochemical Characteristics of the Sifangdianzi Molybdenum Deposit in Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1869-1882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!