Journal of Jilin University(Earth Science Edition) ›› 2022, Vol. 52 ›› Issue (6): 1971-1981.doi: 10.13278/j.cnki.jjuese.20210127

Previous Articles     Next Articles

Sensitivity of Thermal-Fluid Coupling Parameters  of Granite Double Fractures#br#

Zhang Yanjun1,2 ,Yuan Xuebing1 ,Ma Yueqiang1 ,Gao Xuefeng1,Gao Yang1   

  1. 1. College of Construction Engineering,Jilin University,Changchun 130026,China
    2. Key Lab of Groundwater Resource and Environment(Jilin University), Ministry of Education,Changchun 130026,China
  • Received:2021-04-23 Online:2022-11-26 Published:2022-12-27
  • Supported by:
    国家重点研发计划项目(2019YFC0604905-03);国家自然科学基金项目(4177020182)

Abstract: To study the influence of thermal physical parameters of rock mass on seepage heat transfer results, based on discrete element 3DEC software, the heat-flow coupling numerical model of granite with parallel double fractures was established, and the model was verified by comparing with the analytical solution. Based on the numerical model, the distribution characteristics of the rock mass temperature field under different parameters were studied. Combined with the orthogonal experiment method, the sensitivity analysis of the parameters affecting the heat-fluid coupling was carried out. The results showed that the maximum error between the numerical solution and the analytical solution was 3.45%, which indicated that the model is accurate and reliable in studying the heat transfer problem of water flow in fractures. After the model runs for 24 h, the temperature of the inlet and outlet of the fracture is different under different schemes, which indicates that different parameters have different effects on the seepage heat transfer. Along the flow direction of fracture fluid, the sensitivity of model temperature to test parameters tends to decrease. The range values of specific heat capacity of rock mass, fluid velocity and fracture opening at the fracture inlet (point B) are 10.25, 13.80 and 13.25 respectively. The specific heat capacity of rock mass, fluid velocity and fracture opening were the main factors affecting the temperature of heat flow coupled model. The extreme difference values of rock mass heat conductivity and fluid rock heat transfer coefficient were 6.53 and 4.66, respectively. The rock mass heat conductivity and fluid rock heat transfer coefficient had little influence on the model temperature.

Key words: heat-flow coupling, orthogonal test method, sensitivity analysis, double fractured rock mass, numerical modeling

CLC Number: 

  • TK521.3
[1] Sun Jianguo. High-Frequency Asymptotic Scattering Theories and Their Applications in Numerical Modeling and Imaging of Geophysical Fields: An Overview of the Research History and the State-of-the-Art, and Some New Developments [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1231-1259.
[2] Jiang Qifeng, Rong Mianshui, Peng Yanju. Quantitative Analysis of Dynamic Shear Modulus Ratio's Effect on Response Spectra [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 876-885.
[3] Gu Guanwen, Wu Wenli, Li Tonglin. Modeling for the Effect of Magnetotelluric 3D Topography Based on the Vector Finite-Element Method [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1678-1686.
[4] Wang Zhaoling, Liu Zhengping, Huang Yunyan, Huang Xianbin. Wavefield Modeling Based on the Finite Element Method for the Tunnel Seismic Prediction [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1369-1381.
[5] Yang Yanlin,Xu Tianfu,Li Jiaqi,Wang Fugang. Complex Geological Body Modeling and Implementation of CO2 Geological Storage Simulation Using TOUGH [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1307-1313.
[6] Zhao Jianguo,Shi Ruiqi,Chen Jingyi,Zhao Weijun,Wang Hongbin,Pan Jianguo. Application of Auxiliary Differential Equation Perfectly Matched Layer for Numerical Modeling of Acoustic Wave Equations [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 675-682.
[7] Guo Zhenbo, Li Zhenchun. Acoustic Wave Modeling in Frequency-Spatial Domain with Surface Topography [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 683-693.
[8] Zheng Fei, Shi Xiaoqing, Wu Jichun, Zhao Liang, Chen Yang. Global Parametric Sensitivity Analysis of Numerical Simulation for CO2 Geological Sequestration in Saline Aquifers: A Case Study of Yancheng Formation in Subei Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 310-318.
[9] Luo Jiannan, Lu Wenxi, Kang Zhu, Song Jing,Zhang Yibo. Global Sensitivity for Surfactant Enhanced Aquifer Remediation Process [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 558-0563.
[10] YIN Xiong-rui, ZHANG Guang-xin, YANG Fan, XU Bin. Distributed Hydrological Modeling in Semi-Arid Region in Northeast China: A Case Study in the Taoer River Basin [J]. J4, 2011, 41(1): 137-144.
[11] LU Wen-xi,LI Ping,WANG Fu-lin,GUO Long-zhu. Three-Dimensional Numerical Simulation of Groundwater in Naolihe Watershed [J]. J4, 2007, 37(3): 541-0545.
[12] WANG Jin-sheng,TENG Yan-guo,WU Dong-jie. Numerical Simulation Model of Immobile Water and Non-Equilibrium Sorption on the Solute Transport-MIENESOR [J]. J4, 2007, 37(2): 266-270.
[13] SUN Jian-guo. Two New Schemes for Numerical Modeling of Acoustic Scattering [J]. J4, 2006, 36(05): 863-868.
[14] SUN Jian-guo,WANG Xue-qiu. Seismic Modeling by Using Finite Sine and Cosine Transforms: Acoustic Equations [J]. J4, 2006, 36(01): 108-0112.
[15] GUO Xiu-jun,HUANG Xiao-yu. The Electrical Resistivity Anomaly Simulation of Soil Layer Contaminated with Oil Sewage and a Case Study [J]. J4, 2006, 36(01): 128-0131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[3] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[4] MENG Yuan-lin,GAO Jian-jun,LIU De-lai, NIU Jia-yu,SUN Hong-bin,ZHOU Yue,XIAO Li-hua,WANG Yue-chuan. Diagenetic Facies Analysis and Anomalously High Porosity Zone Prediction of the Yuanyanggou Area in the Liaohe Depression[J]. J4, 2006, 36(02): 227 -0233 .
[5] ZENG Zhao-fa, WU Yan-gang, HAO Li-bo,WANG Zhe-jiang,HUANG Hang. The Poisson’s Theorem Based Analysis Method and Application of Magnetic and Gravity Anomalies[J]. J4, 2006, 36(02): 279 -0283 .
[6] CHANG Qiu-ling, LU Xin-xiang, LIU Dong-hua, LI Ming-li. The Relation Between Gold Deposits and Wuduoshan Granite in Eastern Qinling[J]. J4, 2006, 36(03): 319 -325 .
[7] MA Yan-mei,CUI Qi-liang,ZHOU Qiang,HUANG Wei-jun,LIU Ye,PENG Gang,ZOU Guang-tian. InSitu Raman Study of Olivine Under High Temperature[J]. J4, 2006, 36(03): 342 -345 .
[8] HAO Qi,LIU Zhen, ZHA Ming, LI Chun-xia. Characters and Controlling Factors on the Archean Fracturetype Reservoirs of the Ciyutuo Buried Hill in the Liaohe Basin[J]. J4, 2006, 36(03): 384 -390 .
[9] ZENG Dao-ming, JI Hong-jin, CHEN Man,HU Da-qian, ZHU Yong-zheng. The Relationships between Geological and Geochemical Variables at Shancheng Gold Deposit in Jiaodong Area[J]. J4, 2006, 36(04): 511 -515 .
[10] ZHAO Hong-guang,SUN Jing-gui, CHEN Jun-qiang,ZHAO Jun-kang, YAO Feng-liang,DUAN Zhan. The Genesis and Evolution of Orebearing Fluids of the Xiaoxinancha Goldbearing Porphyry Copper Deposit in Yanbian Area: H,O,C,S,Pb Isotope Tracing[J]. J4, 2005, 35(05): 601 -606 .