Journal of Jilin University(Earth Science Edition) ›› 2023, Vol. 53 ›› Issue (4): 1175-1184.doi: 10.13278/j.cnki.jjuese.20210403

Previous Articles     Next Articles

Step-Like Landslide Displacement Prediction Based on Multi-Factor and Multi-Scale Analysis

Xiong Chao, Sun Hongyue   

  1. Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
  • Received:2021-12-08 Online:2023-07-26 Published:2023-08-10
  • Supported by:
    the National Natural Science Foundation of China (41772276)

Abstract: In order to quantitatively analyze the time-lag effect between displacement and inducing factors of step-like landslide, as well as to improve the accuracy of displacement prediction, in this study, the authors proposed a new prediction model and conducted comparative analysis. First, the cumulative displacement was separated into trend term and periodic term based on time series analysis. Then, using maximum information coefficient (Cmi) and multivariate empirical mode decomposition (MEMD) for multi-factor analysis and multi-scale analysis, the multi-factor and multi-scale MEMD prediction model was constructed. Finally, taking  Bazimen landslide in  Three Gorges Reservoir area as an example, the optimal lag period inducing factors were selected as the model input through Cmi, and multi-scale prediction model was established based on the decomposition of multivariate sequence by MEMD. The proposed model was compared with other models (single-factor and single-scale model, multi-factor and single-scale model, single-factor and multi-scale EMD model). The results showed that the optimal lag periods of rainfall and reservoir water level in  Bazimen landslide were 2 d and 4 d. After decomposing the landslide multivariate sequence by MEMD, three groups of mode functions were obtained, each group had seven components, and the time-scale of each corresponding component was consistent. The response of the periodic term displacement to the inducing factors had a time multi-scale characteristic. Compared with the comparison model, the root mean square error of the multi-factor and multi-scale MEMD prediction model decreased by 49.4%, 36.9% and 27.4% on average, and the mean absolute percentage error decreased by 38.0%, 26.4% and 15.8% on average.

Key words: step-like landslide, displacement prediction, multi-factor analysis, multi-scale analysis, maximum information coefficient, multivariate empirical mode decomposition, Three Gorges Reservoir area

CLC Number: 

  • P642.22
[1] Wang Kongwei, Lu Yongqiang, Nie Jin, Teng Mingming, Wang Xiaoliang. Earthquake Variation Law of Xiannüshan and Jiuwanxi Fault Zones in Three Gorges Reservoir Area [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 624-637.
[2] Wang Kongwei, Zhang Fan, Qiu Dianming. Relation of Huangling Anticline and Landslide Group in the Three Gorges Reservoir Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1142-1154.
[3] Han Ge,Gong Wei,Wu Ting,Zhao Yannan. A Stage-Divided Method for Landslide Deformation Prediction by Using Rough Set [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 925-931.
[4] Wang Kongwei, Zhao Xiaoming, Deng Chengjin, Zhang Fan. Relationship Between Landslide Type and Zuojituo Anticline Badong Fault in Three Gorges Reservoir Area [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 169-177.
[5] YE Run-qing, NIU Rui-qing, DENG Qing-lu, ZHANG Liang-pei, ZHAO Yan-na, WU Ting, JIANG Qi-ying. High Cutting Slope Interpretation Based on Multi-Source Data Integration and Three Dimensional Visualization [J]. J4, 2012, 42(1): 161-168.
[6] LI Wei-zhong, WU Chong-long, TAN Zhao-hua. Geological Hazard Exploration Information System for Three Gorges Reservoir Area [J]. J4, 2006, 36(03): 424-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .