J4

• 地下水资源评价与管理 • Previous Articles     Next Articles

Development Process and Tendency of the Hydrodynamics of Groundwater

TAO Yue-zan, Yao Mei   

  1. School of Civil Engineering,Hefei University of Techonlogy, Hefei 230009, China
  • Received:2006-12-31 Revised:1900-01-01 Online:2007-03-26 Published:2007-03-26
  • Contact: TAO Yue-zan

Abstract: The development process of hydrodynamics of groundwater in the 150 years since Darcy’s law was published was reviewed. Based on the governing equation and computation method of seepage problem of the classical theory, the application and development of hydrodynamics of groundwater was briefly introduced from four aspects: groundwater resources evaluation, quality or heat transmission in groundwater flow system, unsaturated flow and computation of groundwater hydrodynamics. The scale effect of hydrogeologic parameters, unsaturated flow, non-continuum flow and freesurface seepage in the current research status was briefly summarized. By coupling these findings with the basic characteristics of the classical theory, the developing tendency of present hydrodynamics of groundwater is discussed. Based on the summary of the development process of Biot coupling flow theory, the disadvantages of the present coupling flow theory were treated by the seepage elements, however by combing with Biot wave theory, one possible method for solving this disadvantage is proposed.

Key words: hydrodynamics of groundwater, classic theory, Biot poroelastic theory, coupling flow, seepage element

CLC Number: 

  • P641.2
[1] Huang Xing, Lu Ying, Liu Xiao, Duan XiaoFei, Zhu Limin. Impact of Groundwater Level Rising on Suspended Solids Clogging During Artificial Recharge [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1810-1818.
[2] Liu Guoqing, Wu Shiqiang, Fan Ziwu, Zhou Zhifang, Xie Chen, Wu Jingxiu, Liu Yang. Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1799-1807.
[3] Yu Peng, Ma Teng, Tang Zhonghua, Zhou Wei. Feasibility of Oilfield Wastewater Disposal in the Underpressure System of Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 211-219.
[4] Huang Xiudong, Shu Longcang, Cui Junling,Tong Kun,Zhou Qingpeng. Test on the Characteristic of Physical Clogging During Groundwater Artificial Recharge and Derivation of Percolation Empirical Formula [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1966-1972.
[5] Chen Rongbo,Shu Longcang,Lu Chengpeng,Li Wei. Experimental Study on the Characteristic Parameters Variation of the Aquifer Caused by Aquifer Compaction [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1958-1965.
[6] He Yujiang, Lin Wenjing, Wang Guiling. In-Situ Monitoring on the Soil Water-Heat Movement of Deep Vadose Zone by TDR100 System [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1972-1979.
[7] Liu Changjun, Zhao Hua, Zhang Shunfu, Ding Liuqian. Finite Element Analysis on Unsteady Seepage Field of Groundwater Reservoir of Tailan River During the Pumping Water of the Radiation Well [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 922-930.
[8] Jiang Si-min, Wang Pei, Shi Xiao-qing,Zheng Mao-hui. Groundwater Contaminant Source Identification by Hybrid Hooke-Jeeves and Attractive Repulsive Particle Swarm Optimization Method [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1866-1872.
[9] SU Xiao-si, GU Xiao-xi, MENG Jing-ying, ZHANG Wen-jing, WANG Han-mei, JIAO Xun. Fate and Transptort Simulation of Multi-Component Solute Under Artificial Recharge Conditions [J]. J4, 2012, 42(2): 485-491.
[10] WANG Zi-jia, DU Xin-qiang, YE Xue-yan, SONG Xiao-ming, ZHANG Jia-shuang, GAO Cui-ping. Suspended Solid Surface Clogging During Urban Stormwater Groundwater Recharge [J]. J4, 2012, 42(2): 492-498.
[11] ZHAI Yuan-zheng, WANG Jin-sheng, HUAN Huan, TENG Yan-guo. Groundwater Dynamic Equilibrium Evidence for Changes of Renewability of Groundwater in Beijing Plain [J]. J4, 2012, 42(1): 198-205.
[12] LU Ying, DU Xin-qiang, CHI Bao-ming, YANG Yue-suo, LI Sheng-tao, WANG Zi-jia. The Porous Media Clogging Due to Suspended Solid During the Artificial Recharge of Groundwater [J]. J4, 2011, 41(2): 448-454.
[13] HU Ji-hua,ZHANG Yan-jun,YU Zi-wang,WU Gang,YANG Xiao-ying,NI Fu-quan. Groundwater Flow Transfixion of Groundwater Source Heat Pump System and Its Influence on Temperature Field [J]. J4, 2008, 38(6): 992-0998.
[14] YE Dong-cheng, MU Shan, TAO Yue-zan. Stream-Water Quality Modelling with Influence of Groundwater Recharge [J]. J4, 2008, 38(4): 644-0648.
[15] LIU Pei-gui, SHU Long-cang. Uncertainty on Numerical Simulation of Groundwater Flow in the Riverside Well Field [J]. J4, 2008, 38(4): 639-0643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!