Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (6): 1799-1807.doi: 10.13278/j.cnki.jjuese.201606203

Previous Articles     Next Articles

Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure

Liu Guoqing1, Wu Shiqiang1, Fan Ziwu1, Zhou Zhifang2, Xie Chen1, Wu Jingxiu1, Liu Yang1   

  1. 1. Nanjing Hydraulic Research Institute, Nanjing 210029, China;
    2. School of Earth Science and Engineering, Hohai University, Nanjing 210098, China
  • Received:2016-03-20 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41402217), China Postdoctoral Fund (2014M561686) and the Basic Scientific Research Service of the Central Level Public Welfare Research Institute(Y115003)

Abstract: Based on attenuation model of hydraulic conductivity during the artificial recharge, the hydraulic conductivity analytic expression was derived. The aquifer pressure analytical expression in recharge and periodic backwashing physical processes with consideration of attenuation of hydraulic conductivity and temporary clogging rate, by application of hydraulic conductivity analytic expression on Theis formula. The physical mechanism of recharge and periodic backwashing can be more accurately described. The calculation results show that the wells recharge pressure growth in line with exponential curves in a continuous process of recharge without periodic backwashing, but the wells recharge pressure growth from the continuous rise in the index converted into intermittent stepped up with periodic backwashing. The more times periodic backwashing, more obvious recharge pressure decreased. But, with the increasing number of periodic backwashing, variation magnitude of recharge pressure is decreased. Based on the result of two blocking rate of analytical solution, the clogging mechanism in different components of the recharge water can be analyzed by using the experiments, which can guide to determine the standards of the recharge water sources.

Key words: hydraulic conductivity, analytical solution, recharge, periodic backwashing, clogging, groundwater source heat pumps

CLC Number: 

  • P641.25
[1] 周彦章, 周志芳, 吴蓉,等. 地源热泵系统地下水热量运移阶段特性模拟研究[J]. 水文地质工程地质, 2011, 38(5): 128-134. Zhou Yanzhang, Zhou Zhifang, Wu Rong, et al. Simulation Study of the Stage-Characteristics of Groundwater Thermal Transport in Aquifer Medium for GWHP System[J]. Hydrogeology & Engineering Geology, 2011, 38(5): 128-134.
[2] Silliman S E. The Importance of the Third Dimension on Transport Through Saturated Porous Media: Case Study Based on Transport of Particles[J]. Journal of Hydrology,1996, 179(1): 181-195.
[3] Silliman S E. Particle Transport Through Two-Dimen-sional, Saturated Porous Media: Influence of Physical Structure of the Medium[J]. Journal of Hydrology, 1995, 167(1): 79-98.
[4] 赵军, 刘泉声, 张程远. 水源热泵回灌困难颗粒阻塞试验研究[J]. 岩石力学与工程学报, 2012, 31(3): 604-609. Zhao Jun, Liu Quansheng, Zhang Chengyuan.Experimental Study of Particles Clogging in Ground Source Heat Pump[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 604-609.
[5] 黄修东, 束龙仓, 刘佩贵, 等. 注水井回灌过程中堵塞问题的试验研究[J]. 水利学报, 2009, 40(4): 430-434. Huang Xiudong, Shu Longcang, Liu Peigui, et al. Experimental Study on Injection Wells During the Clogging of Recharge[J]Hydraulic Engineering, 2009, 40(4): 430-434.
[6] 赵忠仁. 回灌井暂时性堵塞物的形成及其排除过程变化机制分析[J]. 水文地质工程地质, 1988,11(5): 39-42. Zhao Zhongreng. Mechanism of the Formation of a Temporary Blockage of Recharge Wells and Exclude the Change Process[J]. Hydrogeology & Engineering Geology, 1988,11(5): 39-42.
[7] 路莹, 杜新强, 迟宝明, 等. 地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. 吉林大学学报(地球科学版), 2011, 41(2): 448-454. Lu Ying, Du Xinqiang, Chi Baoming, et al. The Porous Media Clogging due to Suspended Solid During the Artificial Recharge of Groundwater[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(2): 448-454.
[8] Santos A, Bedrikovetsky P. A Stochastic Model for Particulate Suspension Flow in Porous Media[J]. Transport in Porous Media, 2006, 62(1): 23-53.
[9] Weroński P, Walz J Y, Elimelech M. Effect of De-pletion Interactions on Transport of Colloidal Particles in Porous Media[J]. Journal of Colloid and Interface Science, 2003, 262(2): 372-383.
[10] 姜桂华, 廖资生, 徐凌云, 等. 人工微生物脱氮过程中含水层堵塞问题的实验研究[J]. 长春科技大学学报,1998, 28(2): 186-190. Jiang Guihua, Liao Zisheng, Xu Lingyun, et al. The Experimental Study on Clogging of Aquifer During the Treatment of Nitric Pollution by Syntheticmicroor Ganism[J]. Journal of Changchun Universsity of Science and Technology, 1998, 28(2): 186-190.
[11] 路莹, 杜新强, 范伟, 等. 地下水人工回灌过程中微生物堵塞的预测[J]. 湖南大学学报(自然科学版),2012, 39(1): 77-80. Lu Ying, Du Xiniang, Fan Wei, et al. Prediction of Microbial Clogging in Groundwater Artificial Recharge[J]. Journal of Hunan University(Natural Sciences), 2012, 39(1): 77-80.
[12] Baveye P, Vandevivere P, Hoyle B L, et al. En-vironmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(2): 123-191.
[13] Hoffmann A, Gunkel G. Bank Filtration in the Sandy Littoral Zone of Lake Tegel (Berlin): Structure and Dynamics of the Biological Active Filter Zone and Clogging Processes[J]. Limnologica-Ecology and Management of Inland Waters, 2011, 41(1): 10-19.
[14] Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. In-terrelationships Between Biological, Chemical, and Physical Processes as an Analog to Clogging in Aquifer Storage and Recovery (Asr) Wells[J]. Water Research, 2000, 34(7): 2110-2118.
[15] Oberdorfer J A, Peterson F L. Waste‐Water In-jection: Geochemical and Biogeochemical Clogging Processes[J]. Ground Water, 1985, 23(6): 753-761.
[16] Vigneswaran S, Suazo R B. A Detailed Investigation of Physical and Biological Clogging During Artificial Recharge[J]. Water, Air, and Soil Pollution, 1987, 35(1/2): 119-140.
[17] Hutchinson A S. Estimation and Quantification of In-jection Well Clogging, Tucson, Arizona[J]. Estimation & Quantification of Injection Well Clogging Tucson Arizona, 1993,23(2):34-45.
[18] Pavelic P, Dillon P J, Barry K E, et al. Water Qua-lity Effects on Clogging Rates During Reclaimed Water Asr in a Carbonate Aquifer[J]. Journal of Hydrology, 2007, 334(1): 1-16.
[19] Vandevivere P, Baveye P, Lozada D S, et al. Mic-robial Clogging of Saturated Soils and Aquifer Materials: Evaluation of Mathematical Models[J]. Water Resources Research, 1995, 31(9): 2173-2180.
[20] 何满潮, 刘斌, 姚磊华, 等. 地热单井回灌渗流场理论研究[J]. 太阳能学报, 2003, 24(2): 197-200. He Manchao, Liu Bin, Yao Leihua, et al.Study on the Theory of Seepage Field for Geothermal Single Well Reinjectong[J]. Acta Energiae Solaris Sinica, 2003, 24(2): 197-200.
[21] 何满潮, 刘斌, 姚磊华, 等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版),2002, 32(4): 374-377. He Manchao, Liu Bin, Yao Leihua, on Hydraulic Conductivity During Geothermal Reinjection[J].Journal of Jilin University(Earth Science Edition), 2002, 32(4): 374-377.
[22] 倪龙, 马最良. 地下水地源热泵回灌分析[J]. 暖通空调,2006, 36(6): 84-90. Ni Long, Ma Zuiliang.Analysis of Injection for Groundwater Source Heat Pump Systems[J].Journal of HV&AC, 2006, 36(6): 84-90.
[23] 李璐, 卢文喜, 杜新强, 等. 人工回灌过程中含水层堵塞试验研究[J].人民黄河,2010, 32(6): 77-78. Li Lu, Lu Wenxi, Du Xinqiang, et al. Artificial Aquifer Recharge Process Blockage Experimental Research[J]. Yellow River, 2010, 32(6): 77-78.
[24] 苏小四, 孟祥菲, 张文静, 等. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报(地球科学版), 2015,45(2): 573-583. Su Xiaosi,Meng Xiangfei,Zhang Wenjing,et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University(Earth Science Edition), 2015,45(2): 573-583.
[25] 孙美华, 张金霞, 魏建中. 地下水源热泵重力回灌的回扬实验研究[J]. 煤气与热力, 2009, 29(8): 1-4. Sun Meihua, Zhang Jinxia, Wei Jianzhong. Experimental Research on Pump Lifting from Gravity Artificial Recharge Well of Underground Water Source Heat Pump System[J]. Gas&Heat, 2009, 29(8): 1-4.
[26] 陈崇希, 林敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999. Chen Chongxi, Lin Min. Groundwater Dynamics[M]. Wuhan: China University of Geosciences Press, 1999.
[1] Lei Huayang, Wang Tieying, Zhang Zhipeng, Lu Haibin, Liu Min. Macro-and Meso-Analysis of Newly Formed Highly Viscous Dredger Fill Under Vacuum Preloading Using Particle Flow Theory [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1784-1794.
[2] Huang Xing, Lu Ying, Liu Xiao, Duan XiaoFei, Zhu Limin. Impact of Groundwater Level Rising on Suspended Solids Clogging During Artificial Recharge [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1810-1818.
[3] Zhang Shiyue, Shu Longcang, Min Xing, Hu Huijie, Zou Zhike. Calculation of Precipitation Infiltration Recharge Based on Land-Use Type [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 860-867.
[4] Wu Peipeng, Shu Longcang, Li Wei. New Method for Artificial Recharge of Phreatic Groundwater [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 518-524.
[5] Jiang Guanghui, Guo Fang, Yu Shi. Chemographs of Karst Water System and Its New Application in Hydrogeological Survey [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 899-907.
[6] Su Xiaosi, Meng Xiangfei, Zhang Wenjing, Shi Xufei, He Haiyang. Change of the Groundwater Microbial Community During Artificial Recharge Process [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 573-583.
[7] Huang Xiudong, Shu Longcang, Cui Junling,Tong Kun,Zhou Qingpeng. Test on the Characteristic of Physical Clogging During Groundwater Artificial Recharge and Derivation of Percolation Empirical Formula [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1966-1972.
[8] Huo Siyuan,Jin Menggui,Liang Xing. Impacts of Low-Permeability Clay Lens in Vadose Zone onto Rainfall Infiltration and Groundwater Recharge Using Numerical Simulation of Variably Saturated Flow [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1579-1587.
[9] Ma Rong, Shi Jiansheng, Liu Jichao. Application of Artificial Endocrine Network Model in Studying of Hydrogeology Parameter [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 914-921.
[10] Shi Xufei, Zhang Wenjing, Wang Hanmei, Jiao Xun, He Haiyang. Modeling of Water-Rock Interaction During the Artificial Recharge [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 220-227.
[11] LIN Xue-yu, ZHANG Wen-jing, HE Hai-yang, SHI Xu-fei, WANG Han-mei, JIAO Xun. Experiment on Impact of Groundwater Quality During Artificial Recharge Process [J]. J4, 2012, 42(5): 1404-1409.
[12] SU Xiao-si, GU Xiao-xi, MENG Jing-ying, ZHANG Wen-jing, WANG Han-mei, JIAO Xun. Fate and Transptort Simulation of Multi-Component Solute Under Artificial Recharge Conditions [J]. J4, 2012, 42(2): 485-491.
[13] WANG Zi-jia, DU Xin-qiang, YE Xue-yan, SONG Xiao-ming, ZHANG Jia-shuang, GAO Cui-ping. Suspended Solid Surface Clogging During Urban Stormwater Groundwater Recharge [J]. J4, 2012, 42(2): 492-498.
[14] ZHAI Yuan-zheng, WANG Jin-sheng, HUAN Huan, TENG Yan-guo. Groundwater Dynamic Equilibrium Evidence for Changes of Renewability of Groundwater in Beijing Plain [J]. J4, 2012, 42(1): 198-205.
[15] TANG Jing-tian, XIN Hui-cui, WANG Ran. Terrain Effect of Complicated Angle-Damain and Topographic Correction for a Point Electric Source [J]. J4, 2012, 42(1): 254-261.
Full text



No Suggested Reading articles found!