J4

• 地质工程与环境工程 • Previous Articles     Next Articles

Reliability Analysis of A Slope Considering the Randomness of Groundwater Table

HE Peng-peng, YAO Lei-hua, LIU Li-peng, CHEN Qing   

  1. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
  • Received:2008-10-10 Revised:1900-01-01 Online:2009-03-26 Published:2009-03-26
  • Contact: HE Peng-peng

Abstract: Water pressure of groundwater can be separated into hydrostatic pressure and hydrodynamic pressure in evaluation model of slope stability and the mechanical analytic model of slope stability is developed by using residual thrust method when considering water pressure of groundwater. Formulas are also induced to calculate the thickness of aquifer and water head in any point between the two points in which groundwater table is given. Taking groundwater table and shear strength index as stochastic variables and the distribution features of these two variables can be obtained basd on the monitored and tested data, the analytical method of slope reliability based on Monte-Carlo method and residual thrust method has been put forward to analyze the slope reliability of a highway slope. Analytical results show that there is a positive correlation between the change of groundwater table and the change of failure probability of slope. Failure probability of slope is approximately 60% when taking groundwater table as stochastic variable, but is 10%-30% when taking groundwater table as determinable variable during the periods of July, August and September when groundwater table changes dramatically.In other months, groundwater table varies slightly and failure probability of slope also varies slightly, but the failure probability of slope when taking groundwater table as stochastic variable is always higher than that when taking groundwater table as determined variable.

Key words: reliability of slope, randomness, groundwater table, residual thrust method, safety factor, groundwater

CLC Number: 

  • P642.2
[1] Dong Jun, Xu Nuan, Liu Tongzhe, Guan Rui, Deng Junwei. Indigenous Microbial Remediation of Middle-High Concentration Cr(Ⅵ) Contaminated Groundwater Enhanced by Emulsified Vegetable Oil [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 234-240.
[2] Dong Weihong, Meng Ying, Wang Yushan, Wu Xiancang, Lü Ying, Zhao Hui. Hydrochemical Characteristics and Formation of the Shallow Groundwater in Fujin,Sanjiang Plain [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 542-553.
[3] Fu Yanling, Luo Zujiang, Liao Xiang, Zhang Jianmang. A Three-Dimensional Full Coupling Model to Simulate and Predict Land Subsidence Caused by High-Rise Building [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1781-1789.
[4] Liu Guoqing, Wu Shiqiang, Fan Ziwu, Zhou Zhifang, Xie Chen, Wu Jingxiu, Liu Yang. Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1799-1807.
[5] Liu Hailong, Ma Xiaolong, Yuan Xin, Mu Huanling, Leng Bingyuan, Hong Mei. Risk Assessment Method of Chromium(Ⅵ) Polluting Groundwater Based on Multiple Regression Analysis [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1823-1829.
[6] Yuan Xiaojie, Guo Zhanrong, Huang Lei, Zhang Bin, Ma Zhiyong, Liu Jie. Estimating Submarine Groundwater Discharge into the Jiaozhou Bay Using 226Ra [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1490-1500.
[7] Yang Yuesuo, Zhang Ge, Song Xiaoming, Wen Yujuan, Zhang Wenqing. Transport and Fate of Estrogens in Soil and Groundwater: A Critical Review [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1176-1190.
[8] Zou Youqin, Liu Li, Li Hongqing, Yan Chun, Zeng Masun, Lan Yingying. Hydrogeological Conditions Control of Shale Gas Exploration [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 824-830.
[9] Chen Meng, Wu Yong, Gao Dongdong, Chang Ming. Shallow Groundwater Hydrogeochemical Evolution Process and Controlling Factors in Plain Zone of Guanghan City [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 831-843.
[10] Wu Peipeng, Shu Longcang, Li Wei. New Method for Artificial Recharge of Phreatic Groundwater [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 518-524.
[11] Qian Wenjian, Shang Yuequan, Du Lili, Zhu Senjun. Influences of Inflatable Location and Pressure on Draining of Slopes [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 536-542.
[12] Wei Runchu, Xiao Changlai, Fang Zhang. Trends Mutation Nodes of Groundwater Dynamic in Jiansanjiang Area of Heilongjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 202-210.
[13] Zhao Lin, Mo Huiting, Zheng Yi. Maintenance Mechanism of Freshwater Lens in Vadose Zone on Coastal Saline Areas [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 195-201.
[14] Jiang Xiuzi, Wen Baoping, Jiang Shu, Feng Chuanhuang, Zhao Cheng, Li Ruidong. Main Factors Analysis for Controlling Kinematic Behavior of Suoertou Landslide [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1798-1807.
[15] Wu Ming, Wu Jianfeng, Shi Xiaoqing, Liu Jie, Chen Gan, Wu Jichun. New Harmonic Oscillator Genetic Algorithm for Efficient Groundwater Optimization and Management [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1485-1492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!