Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (1): 106-118.doi: 10.13278/j.cnki.jjuese.201501109

Previous Articles     Next Articles

Discussion on the Ore-Forming Material Sources of Mujicun Copper (Molybdenum) Polymetallic Orefield in Laiyuan County, Hebei Province, China

Chen Chao1, Wang Baode1, Niu Shuyin1, Zhang Fuxiang1, Ma Baojun1, Zhang Jianzhen1, Sun Aiqun1, Wang Haitao1, Ma Guoxi2, Chen Zhikuan2, Wang Zili3   

  1. 1. College of Resources, Shijiazhuang University of Economics, Shijiazhuang 050031, China;
    2. Baoding Institute of Geological Engineering and Exploration of Hebei Province, Baoding 071051, Hebei, China;
    3. North China Bureau for Geological Exploration, Tianjin 300170, China
  • Received:2014-04-05 Published:2015-01-26

Abstract:

The Mujicun copper (molybdenum) polymetallic orefield in the Taihang Mountains, is located in the secondary faulted basin developed in the upper block of detachment zone on the west side of the neck of the dumbbell shaped Laiyuan igneous complex, the northeastern pitching end of the Fuping mantle branch structure. It is composed of porphyry copper (molybdenum) deposit, skarn iron-copper deposit and hydrothermal vein lead-zinc-silver deposit in periphery, and become the most perspective large-scale copper (molybdenum) polymetallic orefield in Hebei Province at present. Considering the study of ore-forming material sources is crucial for further understanding the metallogenesis of the deposit and the direction of ore-prospecting, authors tested and analyzed sulfur, lead, carbon, hydrogen, oxygen, silicon, and rhenium isotopic compositions in such minerals from the ore as chalcopyrite, galena, pyrite, molybdenite, magnetite, quartz and gypsum. The data showed that the major value of δ34S changes from -3.5‰ to 3.2‰, with the average of 0.3‰;206Pb/204Pb from 15.566 0 to 17.072 0, with the average of 16.547 0;207Pb/204Pb from 15.031 0 to 15.523 0, with the average of 15.258 0;208Pb/204Pb from 36.292 0 to 37.375 0, with the average of 36.721 0;δ13C from -2.94‰ to -2.18‰, with the average of -2.62‰;δ30Si from -0.3‰ to 0.2‰, with the average of 0.0‰;w(Re) from 23.65 μg/g to 266.50 μg/g, with the average of 142.33 μg/g;δ18OH2O from -10.64‰ to 7.70‰, with the average of -1.47%, δD from -148.4‰ to -89.0‰, with the average of -113.7‰ which is less than that of the standard magmatic water. These isotopic data mentioned above show that the ore-forming materials were mainly derived from the deep source and the ore-forming solutions are mainly composed of magmatic water and partly of atmospheric water.

Key words: mantle branch structure, ore-forming material sources, ore-forming solution, copper (molybdenum) deposit, Mujicun orefield, Taihang Mountains

CLC Number: 

  • P618.3

[1] 马国玺.河北省涞源县木吉村铜矿地质特征及成矿模式[J].华北地质矿产杂志, 1997, 12(1):52-66. Ma Guoxi. Geological Characteristics and Metallogenic Model of Copper Deposit at Muji Village of Laiyuan County, Hebei Province[J]. Journal of Geology and Mineral Resources of North China, 1997, 12(1):52-66.

[2] 马国玺, 陈志宽, 陈立景, 等.木吉村铜(钼)矿床地质特征[J].矿床地质, 2010, 29(6):1102-1111. Ma Guoxi, Chen Zhikuan, Chen Lijing, et al. Geological Characteristics of Mujicun Copper(Molybdenum) Deposit[J]. Mineral Deposits, 2010, 29(6):1102-1111.

[3] 陈超, 牛树银, 马宝军, 等.河北省木吉村铜(钼)矿床构造控矿分析[J].地质与勘探, 2013, 49(5):861-871. Chen Chao, Niu Shuyin, Ma Baojun, et al. An Analysis on Ore-Controlling Stuctures of the Mujicun Cu (-Mo) Deposit in Hebei Province[J].Geology and Exploration, 2013, 49(5):861-871.

[4] 要梅娟, 刘家军, 翟德高, 等.大兴安岭南段多金属成矿带硫、铅同位素组成及其地质意义[J].吉林大学学报:地球科学版, 2012, 42(2):362-373. Yao Meijuan, Liu Jiajun, Zhai Degao, et al. Sulfur and Lead Isotopic Compositions of the Polymetallic Deposits in the Southern Daxing'anling:Implications for Metal Sources[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(2):362-373.

[5] 马星华, 陈斌.大兴安岭南段敖仑花斑岩钼(铜)矿床成矿流体来源与成矿作用:稳定同位素C、H、O、S和放射性Pb同位素约束[J].吉林大学学报:地球科学版, 2011, 41(6):1770-1783. Ma Xinghua, Chen Bin. The Source of Hydrothermal Fluids and Mineralization in the Aolunhua Porphyry Mo-Cu Deposit, Southern Da Hinggan Mountains:Constraints from Stable(C, H, O and S) and Radiogenic(Pb)Isotopes[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(6):1770-1783.

[6] 张金树, 多吉, 夏代祥, 等.西藏冈底斯驱龙斑岩型铜钼-矽卡岩型铜矿成矿体系:辉钼矿Re-Os同位素年代学证据[J].吉林大学学报:地球科学版, 2013, 43(5):1366-1376. Zhang Jinshu, Duo Ji, Xia Daixiang, et al. Qulong Porphyry-Skarn Metallogenic System in Gangdese Belt, Tibet:Evidence from Molybdenite Re-Os Geochronology[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(5):1366-1376.

[7] 毛景文, 李厚民, 王义天, 等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报, 2005, 79(6):839-857. Mao Jingwen, Li Houmin, Wang Yitian, et al. The Relationship Between Mantle-Derived Fluid and Gold Ore-Formation in the Eastern Shandong Peninsula:Evidences from D-O-C-S Isotopes[J]. Acta Petrologica Sinica, 2005, 79(6):839-857.

[8] 张志欣, 杨富全, 闫升好, 等.新疆包古图斑岩铜矿床成矿流体及成矿物质来源:来自硫、氢和氧同位素证据[J].岩石学报, 2010, 26(3):707-716. Zhang Zhixin, Yang Fuquan, Yan Shenghao, et al. Sources of Ore-Forming Fluids and Materials of the Baogutu Porphyry Copper Deposit in Xinjiang:Constraints from Sulfur-Hydrogen-Oxygen Isotopes Geochemistry[J]. Acta Petrologica Sinica, 2010, 26(3):707-716.

[9] 崔玉斌, 赵元艺, 屈文俊, 等.西藏当雄地区拉屋矿床磁黄铁矿Re-Os同位素测年和成矿物质来源示踪[J].地质通报, 2011, 30(8):1283-1293. Cui Yubin, Zhao Yuanyi, Qu Wenjun, et al. Re-Os Dating and Ore-Forming Material Tracing of the Lawu Ore Deposit in Damxung Area, Tibet[J]. Geological Bulletin of China, 2011, 30(8):1283-1293.

[10] 程文斌, 顾雪祥, 唐菊兴, 等.西藏冈底斯念靑唐古拉成矿带典型矿床硫化物Pb同位素特征:对成矿元素组合分带性的指示[J].岩石学报, 2010, 26(11):3350-3362. Cheng Wenbin, Gu Xuexiang, Tang Juxing, et al. Lead Isotope Characteristics of Ore Sulfides from Typical Deposits in the Gangdese-Nyainqentanglha Metallogenic Belt:Implications for the Zonation of Ore-Forming Elements[J]. Acta Petrologica Sinica, 2010, 26(11):3350-3362.

[11] 秦大军.太行山北段多金属矿床地球化学特征[J].贵金属地质, 1997, 6(3):161-170. Qin Dajun. Geochemical Features of Polymetallic Deposits in the Northern Section of Taihang Mountains[J].Journal of Precious Metallic Geology, 1997, 6(3):161-170.

[12] 许洪才, 毕伏科, 张德生, 等.河北省涞源县王安镇杂岩体多金属成矿规律[J].地质调查与研究, 2006, 29(1):11-20. Xu Hongcai, Bi Fuke, Zhang Desheng, et al. Polymetallic Metallogenic Regularity of the Wang'anzhen Complex in Laiyuan County, Hebei Province[J]. Geological Survey and Research, 2006, 29(1):11-20.

[13] 吕贻峰, 秦松贤, 邓兆伦.河北涞源木吉村浮图峪铁铜多金属矿田成矿构造条件分析及成矿模式研究[J].地球科学:中国地质大学学报, 1989, 14(5):563-572. Lü Yifeng, Qin Songxian, Deng Zhaolun. Analysis of Mineralizing Tectonic Setting and Study of Metallogenetic Model in Mujicun-Futuyu Fe-Cu Poly Metallic Orefield, Laiyuan, Hebei Province[J]. Earth Science:Journal of China University of Geosciences, 1989, 14(5):563-572.

[14] 高永丰, 魏瑞华, 侯增谦, 等.木吉村斑岩铜矿成矿作用:华北克拉通中生代岩石圈减薄的响应[J].矿床地质, 2011, 30(5):890-902. Gao Yongfeng, Wei Ruihua, Hou Zengqian, et al. Mujicun Porphyry Copper Mineralization:Response to Mesozoic Thinning of Lithosphere in North China Craton[J]. Mineral Deposits, 2011, 30(5):890-902.

[15] 王宝德, 牛树银, 孙爱群, 等.深部矿源与幔枝构造成矿[M].北京:地质出版社, 2010:129-207. Wang Baode, Niu Shuyin, Sun Aiqun, et al. Deep Source of Ore-Forming Materials and the Metallogenesis of Mantle Branch Structure[M]. Beijing:Geological Publishing House, 2010:129-207.

[16] Zartman R E, Doe B R. Plumb Tectonics:The Mode[J].Tectonophysis, 1981, 75:135-162.

[17] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartz and Water[J]. Geophys Res, 1972, 77:3057-3067.

[18] Taylor H P.The Application of Oxygen and Hydrogen Isolope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J]. Econ Geol, 1974, 69:843-883.

[19] Taylor B E. Magmatic Volatiles:Isotope Variation of C, H and S Reviews in Mineralogy[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1):185-225.

[20] Clayton R N, Steiner A. Oxygen Isotope Studies of the Geothermal System at Wairakei, New Zealand[J]. Geochimca et Cosmochimca Acta, 1975, 39(5):1179-1186.

[21] Douthitt C B.The Geochemistry of the Stable Isotopes of Silicon[J]. Geochimical et Cosmochimica Acta, 1982, 46(8):1449-1458.

[22] 丁悌平, 蒋少涌, 万德芳, 等.硅同位素地球化学[M].北京:地质出版社, 1994:9-88. Ding Tiping, Jiang Shaoyong, Wan Defang, et al. Silicon Isotope Geochemistry[M]. Beijing:Geological Publishing House, 1994:9-88.

[23] 毛景文, 张作衡, 张招崇, 等.北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义[J].地质论评, 1999, 45(4):412-417. Mao Jingwen, Zhang Zuoheng, Zhang Zhaochong, et al.Re-Os Age Dating of Molybdenites in the Xiao-liugou Tungsten Deposit in the Northern Qilian Mountains and Its Signifcance[J]. Geological Review, 1999, 45(4):412-417.

[24] Stein H J, Markey R J, Morgan J W, et al. The Remarkable Re-Os Chronometer in Molybdenite:How and Why It Works[J]. Terra Nova, 2001, 13(6):479-486.

[25] 孟祥金, 侯增谦, 董光裕, 等.江西金溪熊家山钼矿床特征及其Re-Os年龄[J].地质学报, 2007, 81(7):946-951. Meng Xiangjin, Hou Zengqian, Dong Guangyu, et al. The Geological Characteristics and Re-Os Isotope Age of Molybdenite of the Xiongjiashan Molybdenum Deposit, Jiangxi Province[J]. Acta Geologica Sinica, 2007, 81(7):946-951.

[1] NIU Shu-yin, NIE Feng-jun, SUN Ai-qun, JIANG Si-hong, WANG Bao-de, ZHANG Jian-zhen, MA Bao-jun, BAI Da-ming, CHEN Chao. Mantle Branch Structure and Silver-Polymetallic Mineralization in the Da Hinggan Mountains, Inner Mongolia [J]. J4, 2011, 41(6): 1944-1958.
[2] WANG Ke-yong, QING Min, BIAN Hong-ye, WAN Duo, SUN Feng-yue, LIU Zheng-hong, JI Zhao-jia. The Geological Features and Geochemistry of Ore-Forming Fluids of Wulong Gold Deposit in Liaoning Province [J]. J4, 2010, 40(3): 557-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!