Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (2): 649-654.doi: 10.13278/j.cnki.jjuese.201502306

Previous Articles     Next Articles

Research on Gas Yield and Level Prediction for Post-Frac Tight Sandstone Reservoirs

Pan Baozhi1, Shi Yujiang2, Jiang Bici1, Liu Dan1, Zhang Haitao2, Guo Yuhang1, Yang Xiaoming2   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Research Institute of Exploration and Development, Changqing Oilfield Compary PetroChina, Xi'an 710018, China
  • Received:2014-04-18 Published:2015-03-26

Abstract:

Tight sandstone reservoirs are always with the characterized by the low porosity, low permeability, and low gas saturation, hardly have any natural capacity,needing fracturing for productivity, fracturing capacity prediction is necessary. We mainly research the method of the gas productivity and level prediction for post-frac tight sandstone reservoirs in the eastern of Sulige region of the Ordos basin. The prediction model is established by neural networks with the logging parameters (RT, GR, AC,CNL,DEN)and fracturing parameters(the amount of sard per meter,the sand ratio,the sand concentration,delivery capacity per meter,total amount of fluid injection the well per meter). The neural networks are Elman neural network, support vector machine (SVR) neural network, and GRNN neural network. We compared the results of three models, and picked up the best model GRNN model to predict the level of the gas productivity.

Key words: Elman networks, support vector regression, GRNN networks, Sulige area, tight sandstone, fracturing capacity

CLC Number: 

  • P631.8

[1] 黄布宙, 潘保芝, 李舟波. 大庆徐家围子地区深部致密砂砾岩气层识别[J]. 吉林大学学报: 地球科学版, 2003, 33(4): 490-494. Huang Buzhou, Pan Baozhi, Li Zhoubo. The Recognition of Gas-Bearing Tight Sandstone Gravel Reservoirs at the Deep of Xujiaweizi in Daqing[J]. Journal of Jilin University: Earth Science Edition, 2003, 33(4): 490-494.

[2] 董建刚, 范晓敏. 致密砂岩孔隙度计算方法[J]. 吉林大学学报: 地球科学版, 2006, 36(增刊1):193-196. Dong Jiangang, Fan Xiaomin. A Method to Calculate Porosity of Compact Sandstone[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(Sup.1):193-196.

[3] 高永利, 孙卫, 张昕. 鄂尔多斯盆地延长组特低渗透储层微观地质成因[J]. 吉林大学学报:地球科学版, 2013, 43(1): 13-19. Gao Yongli, Sun Wei, Zhang Xin. Microscopic Geologic Origin for Ultra-Low Permeability Reservoir of Yanchang Groups, Ordos Basin[J].Journal of Jilin University: Earth Science Edition, 2013, 43(1): 13-19.

[4] 时卓, 张海涛, 刘天定, 等.基于测井资料的苏里格气田致密砂岩储层产能预测方法[J]. 低渗透油气田, 2012, 1(1):71-77. Shi Zhuo, Zhang Haitao, Liu Tianding, et al. Logging Data Based Productivity Forecasting Method of Tight Reservoirs in Sulige Gasfield[J].Low Permearbility Oil & Gas Fields, 2012, 1(1): 71-77.

[5] 张丽华, 潘保芝, 庄华, 等. 低孔隙度低渗透率储层压裂后产能测井预测方法研究[J]. 测井技术, 2012, 36(1): 101-105. Zhang Lihua, Pan Baozhi, Zhuang Hua, et al. Productivity Log Forecasting Method for Post-Frac Reservoir with Low Porosity and Low Permeability[J].Well Logging Technology, 2012, 36(1): 101-105.

[6] 庄华. 苏里格致密砂岩气层压裂产能测井预测方法研究[D].长春:吉林大学, 2013. Zhuang Hua. Research on Gas Productivity Prediction Based on Logs for Post-Frac Tight Sandstone Reservoirs in Sulige Area[D].Changchun: Jilin University, 2013.

[7] 李小强, 赵彦超. 基于MATLAB 的广义回归神经网络的低渗特低渗砂岩气层产能预测[J]. 内蒙古石油化工, 2009(17): 138-141. Li Xiaoqiang, Zhao Yanchao. MATLAB-Based GRNN Hypotonic Low Permeability Sandstone Gas Production Forecast[J].Inner Mongulia Petrochemical Industry, 2009(17):138-141.

[8] 童凯军, 单钰铭, 廖特权, 等. 基于统计学的测井储层产能分级预测研究[J]. 天然气勘探与开发, 2008, 31(2): 40-43. Tong Kaijun, Shan Yuming, Liao Tequan, et al. Based on the Statistical Classification Logging Reservoir Capacity Forecast[J]. Natural Gas Exploration and Development, 2008, 31(2): 40-43.

[9] 陈元千.实用油气藏工程方法[M].东营:石油大学出版社, 1998. Chen Yuanqian. Practical Reservoir Engineering Methods[M]. Dongying: Petroleum University Press, 1998.

[10] 陈元千, 阎为格. 表皮系数的分解方法[J]. 断块油气田, 2004, 10(6): 32-35. Chen Yuanqian, Yan Weige. Decomposition of Skin Factor[J].Fault Block Oil & Gas Field, 2004, 10(6): 32-35.

[11] 高松厚, 郝玉鸿. 确定气井不同开发阶段无阻流量的简易方法:以长庆气田陕 7 井为例[J]. 新疆石油地质, 2001, 22(5): 441-443. Gao Songhou, Hao Yuhong. A Simple Method for Determination of Gas Well's Non-Resistivity Flow During Different Producing Stages: An Example from Well Shan 7 in Changqing Gasfield[J]. Xinjiang Petroleum Geology, 2001, 22(5):441-443.

[12] 时卓, 石玉江, 张海涛, 等. 低渗透致密砂岩储层测井产能预测方法[J]. 测井技术, 2012, 36(6): 641-646. Shi Zhuo, Shi Yujiang, Zhang Haitao, et al. Productivity Prediction of Tight Sand Reservoir with Low Permearbility in Sulige Gas Field[J].Well Logging Technology, 2012, 36(6): 641-646.

[1] Wang Yuxia, Zhou Lifa, Jiao Zunsheng, Shang Qinghua, Huang Shengwang. Sensitivity Evaluation of Tight Sandstone Reservoir in Yanchang Formation in Shanbei Area, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 981-990.
[2] Cai Laixing, Lu Shuangfang, Zhang Xunhua, Xiao Guolin, Wu Zhiqiang, Huang Wenbiao. Establishment of Evaluation Scheme of Tight Sandstone Reservoirs Based on Pore Throat:A Case Study on the 4th Member of Quantou Formation at Central Depression of Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1654-1667.
[3] Zhang Huanxu, Chen Shijia, Lu Jungang, Liu Chaowei, Chen Juan, Li Yong, Xu Kun. Migration of Oil in Tight Sandstones:Discussion from the Dynamics [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1341-1351.
[4] Chen Dongxia, Pang Xiongqi, Yang Keming, Zhu Weiping, Yan Qingxia. Genetic Mechanism and Formation of Superimposed Continuous Tight Sandstone Reservoir in Deep Xujiahe Formation in Western Sichuan Depression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1611-1623.
[5] Liu Peng, Wang Weifeng, Meng Lei, Jiang Shuai. Joint Optimization of Coal-Bed Methane and Tight Gas in the Upper Paleozoic of the Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 692-701.
[6] Pan Baozhi, Jiang Bici, Liu Wenbin, Fang Chunhui, Zhang Rui. Gas-Bearing Logging Features and Quantitative Evaluation for Tight Sandstone Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 930-937.
[7] Li Yilin, Zhang Yunfeng, Cong Lin, Xie Zhou, Yan Ming, Tian Xiaoxiong. Application of X-CT Scanning Technique in the Characterization of Micro Pore Structure of Tight Sandstone Reservoir: an Example from Fuyu Oil Layer in Daan Oilfield [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 379-387.
[8] Qin Xiwen, Liu Yuanyuan, Wang Xinmin, Dong Xiaogang, Zhang Yu, Zhou Hongmei. PM2.5 Prediction of Beijing City Based on Ensemble Empirical Mode Decomposition and Support Vector Regression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 563-568.
[9] Liu Sibing, Shen Zhongmin, Lü Zhengxiang, Song Rongcai, Wang Peng. Contributing Factor Divergence Analysis of Relative High Quality Reservoir of Upper Triassic in the 2nd and 4th Member of Xujiahe Formation of Xinchang Gas Field in West Sichuan [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 993-1001.
[10] Wang Shuping,Xu Shouyu,Dong Chunmei,Wang Liping,Liu Chunping. Diagenesis Characteristics of Deep Natural Gas Reservoirs in Es4x in the North Zone of Minfeng Sag in Dongying Depression [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1747-1759.
[11] LI Jun, ZOU Hua-yao, ZHANG Guo-chang, LI Ping-ping, FENG Chong, ZHANG Yan-zhen, CHEN Jia-song. Origins of Overpressure Tight Gas Reservoirs in the Xujiahe Formation, Northeastern Sichuan Basin [J]. J4, 2012, 42(3): 624-633.
[12] WEN Zhong-hui, REN Hua-zhun, SHU Long-cang, WANG En, KE Ting-ting, CHEN Rong-bo. Daily Discharge Forecast of Karst Underground River on Non-Linear Time Series Model of A Small Sample [J]. J4, 2011, 41(2): 455-458.
[13] DENG Xiao-ying, LI Yue. Support Vector Regression Based on Ricker Wavelet Kernel Function and Its Application to Seismic Prospecting Data Denoising [J]. J4, 2007, 37(4): 821-0827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!