Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (6): 1870-1878.doi: 10.13278/j.cnki.jjuese.201506305

Previous Articles     Next Articles

Numerical Simulation of TSP Fault Model

Lin Yi1,2, Liu Zhengping1, Wang Zhaoling3, Xiao Di3   

  1. 1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. Northwest Research Institute Co,. Ltd of C.R.E.C, Lanzhou 730000, China;
    3. College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China
  • Received:2015-02-28 Published:2015-11-26

Abstract:

During tunnel excavation, a variety of geological disasters might be encountered, such as faults, caves, et.al. Tunnel seismic prediction (TSP) is adopted to mitigate the possible damages. Although TSP technology is used widely, the research about TSP is currently focused on its engineering application cases. We use the finite element method to simulate the tunnel seismic wave field, employ wave field snapshots and time recording method on the impact of faults on the characteristics of the propagation of tunnel seismic wave field, and inversely process the time record of model containing the fault. The digital model of the velocity scattered image and the reflection interface position are obtained, and the fault position from velocity scattered image processed with the default values set by using TSPwin is agreed to the one from the model. In respect to the layered model for an abnormal velocity zone, P-wave is more precise. The system of TSP is strong for its feature of anti-noise. The numerical simulation is verified finally through the process and analysis of the engineering cases.

Key words: TSP, TSPwin, snapshot, tunnel seismic prediction, fault

CLC Number: 

  • P631.4

[1] 刘志刚,刘秀峰.TSP (隧道地震勘探) 在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402. Liu Zhigang,Liu Xiufeng. TSP Application and Deve-lopment in Tunnel Lead Forecast[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1399-1402.

[2] Alimoradi A, Moradzadeh A, Naderi R, et al.Prediction of Geological Hazardous Zones in Front of a Tunnel Face Using TSP-203 and Artificial Neural Networks[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 711-717.

[3] 杨峰.TSP隧道超前预报中典型地质异常体的射线追踪数值模拟研究[D].成都:西南交通大学,2007. Yang Feng. The Ray Tracing Numerical Simulation Study of Typical Geological Anomalous Body in Tunnel Advance Prediction[D]. Chengdu: Southwest Jiaotong University, 2007.

[4] 何刚.TSP-203 系统在隧道超前地质预报中的应用研究[D].长沙:中南大学,2005. He Gang. The Research of Application About TSP-203 in Tunnel Geological Predicatio[D]. Changsha:Central South University, 2005.

[5] 李坚.TSP法在铁路客运专线隧道超前地质预报工作中的应用前景[J].铁道勘察,2006,31(6):45-49. Li Jian. Application Prospect of the TSP Method in the Lead Geological Predication of the Dedicated-Passenger Railway Tunnels[J]. Railway Survey, 2006, 31(6): 45-49.

[6] Ashida Y. Seismic Imaging Ahead of a Tunnel Face with Three-Component Geophones[J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38(6): 823-831.

[7] Bohlen T, Ulrich L,Wolfgang R, et al. Rayleigh-to-Shear Wave Conversion at the Tunnel Face-From 3D-FD Modeling to Ahead-of-Drill Exploration[J].Geophysics, 2007, 72(6): 67-79.

[8] 王朝令, 刘争平, 黄云艳,等.隧道地震预报波场的有限元数值模拟[J].吉林大学学报:地球科学版,2014,44(4): 1369-1381. Wang Zhaoling,Liu Zhengping, Huang Yunyan, et al. Wavefield Modeling Based on the Finite Element Method for the Tunnel Seismic Prediction[J]. Journal of Jilin University: Earth Science Editon, 2014,44(4):1369-1381.

[9] 王朝令,刘争平.τ-p变换在隧道反射地震超前预报波场分离中应用的数值模拟研究[J].地球物理学进展,2012,27(5): 2216-2225. Wang Zhaoling, Liu Zhengping. The Modelling Study of τ-p Transform Applied in the Tunnel Seismic Prediction[J]. Progress in Geophysics, 2012, 27(5):2216-2225.

[10] 王朝令.隧道地震超前预报中波场分离与反演方法的数值模拟研究[J].成都:西南交通大学,2012. Wang Zhaoling. The Numerical Simulation Research on Separation of Wave Field and Inversion Method in Tunnel Seismic Prediction[D]. Chengdu: Southwest Jiaotong University, 2012.

[11] 徐彦, 苏有锦,秦嘉政.Q值研究动态[J].地震研究,2004,27(7):385-389. Xu Yan, Su Youjin, Qin Jiazheng. Development of Q-Value Studies[J]. Journal of Seismological Research, 2004, 27(7): 385-389.

[12] 王有新, 史政军,李少英.深度偏移的发展与应用概况[J].石油地球物理勘探,1994,29(4): 526-531,534. Wang Youxin, Shi Zhengjun, Li Shaoying. Development of Depth Migration and Its Application[J]. Oil Geophysical Prospecting, 1994.29(4):526-531,534.

[13] 王朝令,刘争平.黏弹性边界条件在ANSYS有限元波场模拟中的实现[J].大地测量与地球动力学,2012,32(2): 28-31. Wang Zhaoling, Liu Zhengping. Realization of Vis-coelastic Boundary Condition in Wave Field Simulation with Ansys Finite Element Software[J]. Journal of Geodesy and Geodynamics, 2012, 32(2): 28-31.

[14] 宋宏伟, 王闯,贾颖绚.用地质雷达测试围岩松动圈的原理与实践[J].中国矿业大学学报,2002,31(4):43-46. Song Hongwei, Wang Chuang, Jia Yingxuan. Priciple of Measuring Broken Rock Zone Around Underground Roadway with GPR and Its Application[J]. Journal of China University of Mining& Technology, 2002, 31(4): 43-46.

[1] Mu Dunshan, Fu Guang, Chen Xueqing. Oil and Gas Leakage Positions of Fault Cap Rock Configuration and Its Control on Hydrocarbon Accumulation of Ng3 in Nanpu 1 Structure Area [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1008-1017.
[2] Zheng Guolei, Xu Xinxue, Li Shibin, Yuan Hang, Ma Wei, Ye Qing. Inversion of Gravity Data in Tianjin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1221-1230.
[3] Ma Guoqing, Meng Qingfa, Huang Danian. Structure Identification by Gravity Anomaly in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 507-516.
[4] Zhu Xiaoying, Yang Hai, Kuang Xingtao, Peng Weiwei, Zhang Hongrui. Characteristics of Fault Structures in East Kunlun-Altyn Tagh Based on High-Precision Aeromagnetic Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 461-473.
[5] Yang Dexiang, Fu Guang, Sun Tongwen, Li Xiwei, Jiang Haiyan, Liu Binying. Comprehensive Evaluation Method and Its Application of Oil Carrying Capacity Through Dominant Channel of Oil Source Fault [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1678-1686.
[6] Zhan Mingwang, Fu Guang, Qiu Cuiying, Yang Zaizeng. A New Predicting Method for Comprehensive Damage Degree of Mudstone Caprock by Fault and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1687-1694.
[7] Niu Zicheng, Liu Guangdi, Guo Dianbin, Wang Peng, Zhang Jialing, Zhao Qilei. Maturity Difference of Crude Oil and Its Cause Analysis Between Different Fault Steps in the Central Structural Belts of Chagan Sag [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1047-1059.
[8] Chen Peng, Shan Xuanlong, Hao Guoli, Zhao Rongsheng, Zhou Jian. Faults and Karsts Controlled Geothermal Genesis Model of Xianrenqiao Hot Spring in Changbai Mountain [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1236-1246.
[9] Wang Wei, Fu Guang, Hu Xinlei. A Method Study of Destruction Degree of Faults to Caprock Comprehensive Sealing Gas Ability and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 685-693.
[10] Zhang Bowei, Fu Guang, Zhang Juhe, Hu Ming, Liu Junqiao, Wang Haoran. Fracture Development in Oil-Migrating Fault Transition Zones and Its Control on Hydrocarbon Migration and Accumulation: A Case Study of Es2 Oil Formation of Yilunpu Structure of Wen'an Slope of Jizhong Depression [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 370-381.
[11] Sun Simin, Ji Hancheng, Liu Xiao, Zhao Zhongxin, Chen Liang. Architecture of Sequence Stratigraphy Responding to Segmentation of Boundary Fault: Taking an Example of Dongying Formation on Hanging Wall of Xinanzhuang Fault in Nanpu Sag [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 382-392.
[12] Liu Jin, Liu Zhenghong, Zhao Chen, Peng Youbo, Wang Chujie, Yang Zhongjie, Dou Shiyong. Discovery of the Late Archean Supracrustal Rock to the North of Qinghe Fault in Liaoning Province and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 497-510.
[13] Liu Jingshou, Dai Junsheng, Xu Ke, Zhang Yi, Ding Wenlong. Method for the Characterization of the Evolution of Tectonic Fracture Attitudes and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 84-94.
[14] Li Yinchao, Li Jiansong. A Storage Management Model of Spatiotemporal Data for LUCC [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 294-304.
[15] Song Yang, Gu Hongbiao, Li Haijun, Chi Baoming. Comparison Analysis of Co-Seismic Response Characteristics of Groundwater Level at Two Sides of Fault: A Case Study of Dahuichang Observation Wells in the Middle of Babaoshan Fault in Beijing [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1815-1822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!