Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (5): 1482-1489.doi: 10.13278/j.cnki.jjuese.201605204

Previous Articles     Next Articles

Stress Analysis of the Piston Rod Return in High-Energy Liquid-Jet Hammer Based on Ls-Dyna

Wang Fuping1, Li Peng2, Li Guolin3, Peng Jianming2   

  1. 1. Applied Technology College, Jilin University, Changchun 130012, China;
    2. Construction Engineering College of Jilin University, Changchun 130026, China;
    3. College of Computer Science and Technology, Changchun University, Changchun 130022, China
  • Received:2016-03-04 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by Public Science and Technology Research Founds Projects of Ministry of Land and Resources of China(201311112)

Abstract:

The plastic deformation of piston rod of the liquid-jet hammer with high impacting energy is a key issue, which seriously affects the performance and working life. Numerical simulation is conducted to analyze the piston return impacting process and optimize parameters by nonlinear dynamics simulation software Ls-Dyna. Laboratory test is also carried out for the validation of the analysis. The results show that a very high concentrated stress of 3 339.2 MPa appears at the end of the piston rod when the piston rod impacts the cylinder block with the velocity of 4 m/s. The high transient stress is likely to lead to destruction of the piston rod. By optimizing the diameter ratio of the top surface to the bottom surface and the tail arc diameter of the piston rod to the value of 17/16 and 60 mm, respectively, the maximum transient stress is reduced to 1 419.66 MPa with a 58% decrease, which can largely improve the piston rod performance and working life.

Key words: liquid-jet hammer, concentrated stress, Ls-Dyna, piston rod, plastic deformation

CLC Number: 

  • P634.3

[1] 彭枧明.射流式液动锤增设蓄能装置的数值分析与实验研究[D]. 长春:吉林大学,2004. Peng Jianming. A Numerical and Experimental Study of Liquid Jet Hammer with Energy-Saving Mechanism[D]. Changchun:Jilin University,2004.

[2] 殷坤, 王茂森, 彭枧明,等.冲击回转钻进[M]. 北京:地质出版社,2010. Yin Kun, Wang Maosen, Peng Jianming, et al. Percussive-Rotary Drilling[M]. Beijing:Geological Publishing House,2010.

[3] 王达,张伟,张晓西,等.中国大陆科学钻探工程科钻一井钻探工程技术[M].北京:科学出版社,2007. Wang Da, Zhang Wei, Zhang Xiaoxi, et al. Drilling Techniques for China Continental Scientific Drilling Engineering No.1 Well[M]. Beijing:Science Press,2007.

[4] 菅志军, 殷琨, 蒋荣庆,等.增大液动射流式冲击器单次冲击功的试验研究[J].长春科技大学学报,2000, 30(3):303-306. Jian Zhijun, Yin Kun, Jiang Rongqing, et al. The Research on Increasing Impacting Energy of Hydro-Efflux Hammer[J]. Journal of Changchun University of Science and Technology, 2000, 30(3):303-306.

[5] 刘建林.气体钻井用贯通式潜孔锤关键技术研究[D].长春:吉林大学,2009:111-137. Liu Jianlin. Researches on the Key Technologies of Hollow-Through DTH Used in Gas Drilling[D]. Changchun:Jilin University, 2009:111-137.

[6] 赵统武.冲击凿入效率的波动理论研究[J].金属学报,1980(3):263-276. Zhao Tongwu. The Wave Theory Study of Efficiency of Percussive Penetration[J]. Acta Metallurgica Sinica,1980(3):263-276.

[7] 王磊,刘杰,刘树英.往复式活塞隔膜泵曲轴的动态特性分析[J].机械设计与制造,2010(5):238-240. Wang Lei,Liu Jie,Liu Shuying. Analysis on Dynamic Characteristic of Crank Shaft of Reciprocating Piston Diaphragm Pump[J].Machinery Design & Manu-facture,2010(5):238-240.

[8] 梁旭.金属材料疲劳强度影响因素的研究[D].沈阳:东北大学,2009. Liang Xu.Research on Influence Factors on Metal Fatige Strength[D]. Shenyang:Northeastern University,2009.

[9] 陈家旺. 射流式液动冲击器仿真计算与实验研究[D]. 长春:吉林大学,2007:39-113. Chen Jiawang. Research on Simulation Computation and Experiment of Liquid Jet Hammer[D]. Changchun:Jilin University, 2007.

[10] 王人杰, 蒋荣庆. 液动冲击回转钻进技术[M]. 北京:地质出版社,1988:97-104. Wang Renjie, Jiang Rongqing. Hydraulically Impacting-Rotary Drilling Technique[M]. Beijing:Geological Publishing House,1988:97-104.

[11] Chiang L E. ElõÃas D A. Modeling Impact in Down-the-Hole Rock Drilling[J]. International Journal of Rock Mechanics and Mining Sciences. 2000,37:599-613.

[12] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社, 2004:63-159. Wang Fujun. The Analysis of Computational Fluid Dynamics:CFD Software Principle and Application[M].Beijing:Tsinghua University Press, 2004:63-159.

[13] 殷其雷,殷琨,柳鹤,等.潜孔锤反循环钻进技术在某水电站的试验应用[J].吉林大学学报(地球科学版),2014,44(3):961-968. Yin Qilei, Yin Kun, Liu He,et al.Application Test of DTH Hammer Reverse Circulation Drilling Technique in a Hydropower Station[J]. Journal of Jilin University(Earth Science Edition), 2014,44(3):961-968.

[14] 李夕兵,赖海辉,古德生.不同加载波形下矿岩破碎的耗能理论[J]. 中国有色金属学报,1992, 2(4):10-14. Li Xibing,Lai Haihui,Gu Desheng. The Dissipation Theory of Rock Breakage Under Different Loading Waveforms[J]. The Chinese Journal of Nonferrous Metals, 1992, 2(4):10-14.

[15] 许世文,董满生,胡宗军.等. 42CrMo钢疲劳试验研究[J].合肥工业大学学报(自然科学版),2008,31(9):1506-1508. Xu Shiwen, Dong Mansheng, Hu Zongjun, et al. Fatigue Test Research on Steel 42CrMo[J]. Journal of Hefei University of Technology(Natural Science Edition), 2008, 31(9):1506-1508.

[16] 祁宏军.石油、地热钻井冲击回转钻进试验研究[D].长春:吉林大学,2002. Qi Hongjun. Experimental Research of Hydro-Efflux Hammer for Oil and Geothermal Drilling[D].Changchun:Jilin University,2002.

[17] 王多智. 冲击荷载下网壳结构的失效机理研究[D]. 哈尔滨:哈尔滨工业大学, 2010:33-80. Wang Duozhi. Failure Mechanism of Reticulated Shells Under Impact[D]. Harbin:Harbin Institute of Technology, 2010:33-80.

[1] Zhang Xinxin, Peng Jianming, Sun Mingze, Wu Dongyu. Study on the Sealing Characteristics Between the Piston and Cylinder in the High-Energy Liquid-Jet Hammer Based on CFD Method [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 534-541.
[2] BANG Jian-ming, LIU He, ZHAO Zhi-qiang, BO Kun, WANG Wei. Erosion Mechanism on Outer Wall of Bottom Plate of Fluidic Element for YSC178A Liquid-Jet Hammer [J]. J4, 2010, 40(5): 1140-1144.
[3] LI Guo-lin, BANG Jian-ming, LIU He, ZHAO Zhi-qiang. Prediction and Verification of Critical Flow Velocity for Jet Nozzle of |Hammer Hydro [J]. J4, 2010, 40(1): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!