Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (1): 181-192.doi: 10.13278/j.cnki.jjuese.20160080

Previous Articles     Next Articles

Influencing Factors on Distribution and Accumulation of Arsenic in Topsoil in Beibu Gulf of Guangxi

Zheng Guodong1, Qin Jianxun1, Fu Wei2, Yang Zhiqiang1, Zhao Xinjin1, Lu Bingke1   

  1. 1. Guangxi Institute of Geological Survey, Nanning 530023, China;
    2. College of Earth Sciences, Guilin University of Technology, Guilin 541004, Guangxi, China
  • Received:2016-11-21 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41462005),National Special Project of China Geological Survey (GZTR20060115, GZTR20070107, GZTR20080110) and Natural Science Foundation of Guangxi Province (2014GXNSFAA118304)

Abstract: A total of 7 327 topsoil and 400 rock samples were collected in Beibu Gulf of Guangxi, and the concentration of the arsenic (As) and other elements or soil properties, such as K2O, Na2O, CaO, MgO, SiO2, Al2O3, TFe2O3, Mn, Ti, soil organic matter (SOC) and pH, were analyzed to discuss the relationship between the As and parent rock, weathering process, main elements, and soil properties. Moreover, we attempted to delineate the primary and secondary relationships between these factors. The results of this study show that the concentration of As is 7.96×10-6, lower than the background value of China soil. Weathering play a role in As accumulation more important than parent rocks. The results of Pearson and principal analyses indicate that Al-bearing, Fe-bearing minerals and SOC play a primary role in As accumulation, the influence of pH and Ca-bearing mineral is weak, and the role of K-bearing, Na-bearing and Mg-bearing minerals in As accumulation is negligible.

Key words: arsenic, distribution, influence factors, Beibu Gulf, topsoil

CLC Number: 

  • P59
[1] 管东升, 陈玉娟, 阮国标.广州城市及近郊土壤重金属含量特征及人类活动的影响[J]. 中山大学学报(自然科学版), 2001, 40(4): 93-97. Guan Dongsheng, Chen Yujuan, Ruan Guobiao. Study on Heavy Metal Concentrations and the Impact of Human Activity on Them in Urban and Suburb Soils of Guangzhou[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2001, 40(4): 93-97.
[2] Staglini W M, Doelman P, Salomons W, et al. Che-mical Time Bombs: Predicting the Unpredictable Environment[J]. Environment Science and Policy for Sustainable Development, 1991, 33(4): 4-30.
[3] Salomons W, Konsten C J M, Meulen-Smidt G R B T, et al. Summary of the Workshop on Delayed Effects of Chemicals in Soils and Sediments (Chemical Time Bombs), with Emphasis on the Scandinavian Region[J]. Applied Geochemistry, 1993, 8(9): 295-299.
[4] Chen T B, Wong J W C, Zhou H Y, et al. Asse-ssment of Trace Metal Distribution and Contamination in Surface Soils of HongKong[J]. Environmental Pollution, 1997, 96(1): 61-68.
[5] Alloway B J. Heavy Metals in Soils[M]. London: Environmental Pollution, 1995:1318-1324.
[6] Siegel F R. Environmental Geochemistry of Potentially Toxic Metals[M]. Berlin: Springer Science & Business Media, 2002: 45-59.
[7] Hardy M, Cornu S. Location of Natural Trace Elements in Silty Soils Using Particle-Size Fractionation[J]. Geoderma, 2006, 133(3): 295-308.
[8] Acosta J A, Martínez-Martínez S, Faz A, et al. Accumulations of Major and Trace Elements in Particle Size Fractions of Soils on Eight Different Parent Materials[J]. Geoderma, 2011, 161: 30-42.
[9] Klassen R A. Geological Factors Affecting the Distri-bution of Trace Metals in Glacial Sediments of Central New Foundland[J]. Environmental Geology, 1998, 33(2): 154-169.
[10] Salminen R, Tarvainen T. The Problem of Defining Geochemical Baselines: A Case Study of Selected Elements and Geological Materials in Finland[J]. Journal of Geochemical Exploration, 1997, 60(1): 91-98.
[11] Tack F M G, Verloo M G, Vanmechelen L, et al. Baseline Concentrations Levels of Trace Elements as a Function of Clay and Organic Carbon Contents in Soils in Flanders (Belgium)[J]. Science of Total Environment, 1997, 201(2):113-123.
[12] Martinez C E, Motto H L. Solubility of Lead, Zinc and Copper Added to Mineral Soils[J]. Environmental Pollution, 2000, 107(1): 153-158.
[13] Ramos-Miras J J, Roca-Perez L,Guzmán-Palomino M, et al. Background Levels and Baseline Values of Available Heavy Metals in Mediterranean Greenhouse Soils (Spain)[J]. Journal of Geochemical Exploration, 2011,110(2): 186-192.
[14] 王世杰, 季宏兵, 欧阳自远,等. 碳酸盐岩风化成土作用的初步研究[J]. 中国科学:D辑, 1999, 29(5): 441-449. Wang Shijie, Ji Hongbing, Ouyang Ziyuan, et al. Study on Weathering Pedogenesis of Carbonate Rock[J]. Science in China: Series D, 1999, 29(5): 441-449.
[15] 杨元根, 刘丛强, 袁可能,等. 南方红土形成过程及其稀土元素地球化学[J]. 第四纪研究, 2000, 20(5): 469-480. Yang Yuangen, Liu Congqiang, Yuan Keneng, et al. Laterite Formation Process in Southern China and Its Rare Earth Element(REE) Geochemistry[J]. Quaternary Sciences, 2000, 20(5): 469-480.
[16] 孙承兴, 王世杰, 刘秀明,等. 碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程:以贵州花溪灰岩风化壳剖面为例[J]. 矿物学报, 2002, 22(2): 126-132. Sun Chengxing, Wang Shijie, Liu Xiuming,et al. Geochemical Characteristics and Formation Mechanism of Rock:Soil Interface in Limestone Weathering Crust at Huaxi, Guizhou Province[J].Acta Mineralogica Sinica, 2002, 22(2): 126-132.
[17] 刘秀明, 王世杰, 孙承兴,等. 石灰土物质来源的判别:以黔北、黔中几个剖面为例[J].土壤, 2004, 36(1): 30-36. Liu Xiuming, Wang Shijie, Sun Chengxing, et al. Identification of Origin of Limestone Soil:A Case Study of Profiles in Central and North Guizhou[J]. Soils, 2004, 36(1): 30-36.
[18] 周德全, 王世杰, 刘秀明. 石灰土(碳酸盐岩风化壳)形成地球化学过程研究[J].地球与环境, 2005, 33(2): 31-38. Zhou Dequan, Wang Shijie, Liu Xiuming, et al. Study on Geochemical Processes in Limestone Soil Profiles[J]. Earth and Environment, 2005, 33(2): 31-38.
[19] 周长松, 邹胜章, 李录娟, 等. 岩溶区典型石灰土Cd形态指示意义及风险评价:以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562. Zhou Changsong, Zou Shengzhang, Li Lujuan, et al. Implications of Cadmium form and Risk Assessment of Calcareous Soil in Karst Area: A Case Study of Maocun in Guilin, China[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 552-562.
[20] Yu W C, Wang R H, Zhang Q L, et al. Minera-logical and Geochemical Evolution of the Fusui Bauxite Deposit in Guangxi, South China: From the Original Permian Orebody to a Quarternary Salento-Type Deposit[J]. Journal of Geochemical Exploration, 2004, 146:75-88.
[21] Wei X, Ji H B, Li D J, et al. Material Source Analysis and Element Geochemical Research About Two Types of Representative Bauxite Deposits and Terra Rossa in Western Guangxi, Southern China[J]. Journal of Geochemical Exploration, 2013, 133: 68-87.
[22] Liu W J, Liu C Q, Zhao Z Q, et al. Elemental and Strontium Isotopic Geochemistry of the Soil Profiles Developed on Limestone and Sandstone in Karstic Terrain on Yunnan-Guizhou Plateau, China: Lmplications for Chemical Weathering and Parent Materials[J]. Journal of Asian Earth Sciences, 2013, 67(7):138-152.
[23] 多目标区域地球化学调查规范DD2005-1[S]. 北京: 中国标准出版社, 2005. Specification for Multi-Purpose Regional Geochemical Survey DD2005-1[S]. Beijing: Standards Press of China, 2005.
[24] 数据的统计处理和解释正态性检验GB/T4882-2001[S]. 北京: 中国标准出版社, 2001. Statistica Interpretation of Data-Normality Test GB /T4882-2001[S]. Beijing: Standards Press of China, 2001.
[25] 鄢明才, 迟清华, 顾铁新, 等. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探, 1997(6): 451-459. Yan Mingcai, Chi Qinghua, Gu Tiexin, et al. Chemical Compositions of Continental Crust and Rocks in Eastern China[J]. Geophysical and Geochemical Exploration, 1997(6): 451-459.
[26] 鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素风度与表生地球化学特征[J]. 物探与化探, 1997,21(3):161-167. Yan Mingcai, Gu Tiexin, Chi Qinghua et al. Abundance of Chemical Elements of Soils in China and Supergenesis Geochemistry Characteristics[J]. Geophysical and Geochemical Exploration, 1997, 21(3):161-167.
[27] Fichter J, Turpault M P, Dambrine E, et al. Loca-lization of Base Cations in Particle Size Fractions of Acid Forest Soils (Volges Mountains, N-E France)[J]. Geoderma, 1998, 82(4): 295-314.
[28] 广西土壤肥料工作站. 广西土壤[M]. 南宁: 广西科学技术出版社, 1994: 300-301. Guangxi Soil and Fertilizer Station. Soil in Guangxi[M]. Nanning: Guangxi Science and Technology Press, 1994: 300-301.
[29] Zhang X P, Deng W, Yang X M. The Background Concentrations of 13 Soil Trace Elements and Their Relationships to Parent Materials and Vegetation in Xizang (Tibet), China[J]. Journal of Asian Earth Sciences, 2002, 21(2): 167-174.
[30] Chen M, Ma L Q, Harris W G. Baseline Concen-trations of 15 Trace Elements in Florida Surface Soils[J]. Journal of Environmental Quality, 1999, 28(4): 1173-1181.
[31] Tack F M G, Vanhaesebroeck T, Verloo M G, et al. Mercury Baseline Levels in Flemish Soils (Belgium)[J]. Environmental Pollution, 2005, 134(1): 173-179.
[32] Huang P M. Feldspars, Olivines, Pyroxenes, and Amphiboles[C]//Dixon J B, Weed S B. Minerals in Soil Environments. Madison: Soil Science Society of America Journal, 1989: 975-1050.
[33] Monger H C, Kelly E F. Silica Minerals[C]//Dixon J B, Schulze D G. Soil Mineralogy with Environmental Applications. Madison: Soil Science Society of America Journal, 2002: 611-636.
[34] Bigham J M, Fitzpatrick R W, Schulze D G, et al. Iron Oxides[C]//Dixon J B, Schulze D G. Madison: Soil Mineralogy with Environmental Applications. Madison: Soil Science Society of America Journal, 2002: 323-367.
[35] Nachtegaal M, Sparks D L. Effect of Iron Oxide Coatings on Zinc Sorption Mechanism at the Clay-Mineral/Water Interface[J]. Journal of Colloid and Interface Science, 2004, 276(1): 13-23.
[36] Sterckeman T, Douay F, Baize D, et al. Factors Affecting Trace Element Concentrations in Soils Developed on Recent Marine Deposits from Northern France[J]. Applied Geochemistry, 2004, 19(1): 89-103.
[37] Sipos P, Németh T, Kis V K, et al. Association of Individual Soil Mineral Constituents and Heavy Metals as Studied by Sorption Experiments and Analytical Electron Microscopy Analyses[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1512-1520.
[38] Obrist D, Johnson D W, Lindberg S E, et al. Mercury Distribution Across 14 US Forests:Part I: Spatial Patterns of Concentrations in Biomass, Litter, and Soils[J]. Environmental Science and Technology, 2011, 45(9): 3974-3981.
[1] Liu Hai, Lin Chengyan, Zhang Xianguo, Wang Hongwei, Fu Xiaoliang, Li Jia. Reservoir Architecture and Remaining Oil Distribution in Braided River of Guantao Formation, Kongdian Oilfield [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 665-677.
[2] Sun Chao, Shao Yanhong, Wang Handong. Research Progress and Thinking on Horizontal Frost Heaving Force and Retaining Structure [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 784-798.
[3] Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs: A Case Study of Chang 7 Member in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692.
[4] Xu Jun, Hao Libo, Zhao Xinyun, Zhao Yuyan, Ma Chengyou, Wei Qiaoqiao, Wu Chao, Shi Houli. Spatial-Temporal Distribution of Heavy Metals in Surface Sediments from Upper Reaches of the Songhua River [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 854-862.
[5] Xiong Kai, Gong Zhaoning, Zhang Lei, Zhao Wenji. Spatial Distribution of Total Soil Nitrogen Under Reclaimed Water Recharge [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1829-1837.
[6] Tian Min, Dong Chunmei, Lin Chengyan, Chai Xiaoying, Wang Lijuan. Productivity Evaluation Method of Single Sand Body Gas Reservoir in Sebei-2 Biogenic Gas Field, Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1060-1069.
[7] Zhang Ze, Zhou Hong, Qin Qi, Bing Hui, Wu Junjie, Zhou Panfeng. Experimental Study on Porosity Characteristics of Loess Under Freezing-Thawing Cycle [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 839-847.
[8] Lü Bin, Wang Tao, Tong Ying, Zhang Lei, Yang Qidi, Zhang Jianjun. Spatial & Temporal Distribution and Tectonic Settings of Magmatic-Hydrothermal Ore Deposits in the Eastern Central Asia Orogen Belt [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 305-343.
[9] Xu Zemin, Mei Xuefeng, Wang Lirong, Zhang Youwei, Zeng Qiang, Guo Lili. Precipitation Temporal and Variability of Landslide Early Warning Research: A Case Study on Touzhai Gully in Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 154-162.
[10] Yuan Lijuan, Yang Fengtian. Temperature Distribution Characteristic of Jixian Reservoir in Beijing Depression [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 179-188.
[11] Liu Junqiao, Lü Yanfang, Fu Guang, Sun Tongwen, Li Jiaxing. Transporting Models of Oil-Gas Migration by Normal Fault and Its Controlling Effect to Oil-Gas Distribution [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1672-1683.
[12] Liu Hailong, Ma Xiaolong, Yuan Xin, Mu Huanling, Leng Bingyuan, Hong Mei. Risk Assessment Method of Chromium(Ⅵ) Polluting Groundwater Based on Multiple Regression Analysis [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1823-1829.
[13] Jiang Guipu. Cause of Oil-Gas Space Complementary Distribution and the Determining Methods of Distribution Range in Continental Faulted Depression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1649-1659.
[14] Zhang Liqiang, Lu Xuning, Ge Xueying, Zhang Shuguang. Neogene Sedimentary Models of Raoyang Sag in Liubei Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1021-1029.
[15] Yan Lei, Liu Zhaojun, Fang Shi, Zhang Ge, Zhang Junlong, Hu Fei. Sandstone Distribution Characteristics and Dispersal Mechanism of the Lower Cretaceous Nantun Formation,Tanan Depression [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 507-517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!