Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (3): 872-880.doi: 10.13278/j.cnki.jjuese.20170093

Previous Articles     Next Articles

Characteristics of 3D DC Resistivity Response for Arbitrary Anisotropic Models Using Circular Scanning Measurement

Yin Changchun, Yang Zhilong, Liu Yunhe, Zhang Bo, Qi Yanfu, Cao Xiaoyue, Qiu Changkai, Cai Jing   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-07 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by Key Program of National Nature Science Foundation of China(41530320), China Natural Science Foundation for Young Scientists(41404093) and Key National Research Project of China(2016YFC0303100, 2017YFC0601903)

Abstract: Modelling and identification of subsurface electrical anisotropy has always been a hot topic in the geophysical community. This paper presents a 3D anisotropic forward modelling algorithm using an adaptive finite-element method based on unstructured grids. Based on the existing research, we analyzed the typical anisotropic models, and studied the characteristics of the apparent resistivity related to the electrical anisotropic media and the identification of underground electrical anisotropy. Considering the existence of anisotropic paradox, we applied the circular direct current (DC) scanning measurement. The ratio of the principal resistivity affects the ratio of the major axis to the minor axis in the elliptical polar apparent resistivity curve, and the rotation direction of the principal resistivity changes the shape of the polar curve. The adaptive finite-element code is checked for accuracy against 1D semi-analytical solutions for an arbitrary anisotropic earth. The algorithm and results of our numerical experiments provide a technical support to the processing and interpretation of DC resistivity data.

Key words: numerical modelling, unstructured grids, adaptive finite-element method, electrical anisotropy, circular scanning measurement

CLC Number: 

  • P631.3
[1] 徐世浙,刘斌,阮百尧. 电阻率法中求解异常电位的有限单元法[J]. 地球物理学报, 1994, 37(2):511-515. Xu Shizhe, Liu Bin, Ruan Baiyao.The Finite Element Method for Solving Anomalous Potential for Resistivity Surveys[J]. Chinese Journal of Geophysics, 1994, 37(2):511-515.
[2] Pain C C, Herwanger J V, Saunders J H, et al. Anisotropic Resistivity Inversion[J]. Inverse Problems, 2003, 19(5):1081-1111.
[3] 刘斌,李术才,李树忱,等. 隧道含水构造电阻率法超前探测正演模拟与应用[J]. 吉林大学学报(地球科学版), 2012, 42(1):246-253. Liu Bin, Li Shucai, Li Shuchen, et al. Forward Modeling and Application of Electrical Resistivity Method for Detecting Water-Bearing Structure in Tunnel[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1):246-253.
[4] Yin C, Weidelt P. Geoelectrical Fields in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 1999, 64(2):426-434.
[5] 贲放,刘云鹤,黄威,等. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2):581-593. Ben Fang, Liu Yunhe, Huang Wei, et al. MCSEM Response for Anisotropic Media in Shallow Water[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):581-593.
[6] Yin C. Geoelectrical Inversion for a One-Dimensional Anisotropic Model and Inherent Non-Uniqueness[J]. Geophysical Journal International, 2000, 140(1):11-23.
[7] Habberjam G. Apparent Resistivity, Anisotropy and Strike Measurements[J]. Geophysical Prospecting, 1975, 23(2):211-247.
[8] Li P, Uren N. Analytical Solution for the Point Source Potential in an Anisotropic 3-D Half-Space:I:Two-Horizontal-Layer Case[J]. Mathematical and Computer Modelling, 1997, 26(5):9-27.
[9] Yin C, Maurer H M. Electromagnetic Induction in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 2001, 66(5):1405-1416.
[10] Li P, Uren N. The Modelling of Direct Current Electric Potential in an Arbitrarily Anisotropic Half-Space Containing a Conductive 3-D Body[J]. Journal of Applied Geophysics, 1997, 38(1):57-76.
[11] Wang T, Fang S. 3-D Electromagnetic Anisotropy Modelling Using Finite Difference[J]. Geophysics, 2001, 66(5):1386-1398.
[12] Wang W, Wu X, Spitzer K. Three-Dimensional DC Anisotropic Resistivity Modelling Using Finite Elements on Unstructured Grids[J]. Geophysical Journal International, 2013, 193(2):734-746.
[13] Yin C, Zhang P, Cai J. Forward Modelling of Marine DC Resistivity Method for a Layered Anisotropic Earth[J]. Applied Geophysics, 2016, 13(2):279-287.
[14] Si H. A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator[D]. Berlin: Weierstrass Institute for Applied Analysis and Stochastic, 2006.
[15] 金建铭, 电磁场有限元法[M]. 西安:西安电子科技大学出版社, 2014. Jin Jianming. The Finite Element Method in Electromagnetics[M]. Xi'an:Xi'an University Press, 2014.
[16] Ren Z, Tang J. A Goal-Oriented Adaptive Finite-Element Approach for Multi-Electrode Resistivity System[J]. Geophysical Journal International, 2014, 199(1):136-145.
[17] 刘国兴. 电法勘探原理与方法[M]. 北京:地质出版社, 2005. Liu Guoxing. Principals and Methods of Electrical Prospecting[M]. Beijing:Geological Press, 2005.
[18] Zienkiewicz O C, Zhu J Z. Super-Convergent Patch Recovery and a Posteriori Error Estimates:Part1:The Recovery Technique[J]. Internatioanl Journal for Numerical Methods in Engineering, 1992, 33(7):1331-1364.
[19] 王飞燕. 基于非结构化网格的2.5-D直流电阻率法自适应有限元数值模拟[D]. 长沙:中南大学, 2009. Wang Feiyan. 2.5-D DC Resistivity Modeling by the Adaptive Finite-Element Method with Unstructured Triangulation[D]. Changsha:Central South University, 2009.
[20] Wait J R. Current Flow into a Three-Dimensionally Anisotropic Conductor[J]. Radio Science, 1990, 25(5):689-694.
[1] Ben Fang, Liu Yunhe, Huang Wei, Xu Chi. MCSEM Responses for Anisotropic Media in Shallow Water [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 581-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!