Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (4): 1221-1230.doi: 10.13278/j.cnki.jjuese.20170171

Previous Articles     Next Articles

Inversion of Gravity Data in Tianjin

Zheng Guolei1, Xu Xinxue1, Li Shibin1, Yuan Hang1, Ma Wei1, Ye Qing2   

  1. 1. Tianjin Geophysical Exploration Center, Tianjin 300170, China;
    2. China Earthquake Networks Center, Beijing 100045, China
  • Received:2017-11-21 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by Cooperation Project Between China Geological Survey and Tianjin Municipal Bureau of Land Resources and Housing Administration(1212011220232)

Abstract: Gravity inversion is one of the most important techniques by which underground geological information is obtained. With density and electrical parameters statistical result in Tianjin, distributional characteristics of physical property of strata are studied in this paper. Using the technique of normalized vertical derivative of the total horizontal derivative of the bouguer gravity anomaly in Tianjin, this paper infers the faults structure and divides into tectonic units in Tianjin. Then the author carried out the inversion of density interfaces inside every tectonic unit in combination with geological information by the density interface inversion module in Geosoft software, and constructed 3-D visual geological models with the inversion results based on the software of GOCAD. In addition, calibrating of the main geological interface and structure was realized by means of virtual drill which is made by depth-apparent resistivity calculated by MT profiles. And the model reliability was verified by the geological profile fitted by Burguer gravity anomaly in the same position. By using the inversion results and previous geological understanding in this area, we inferred Baodi fault、Jiyunhe fault、F3 fault、Yangliuqing fault and F7 fault have strong activity after the Mesozoic era, and so are Cangdong fault and Tianjin fault after Paleogene.

Key words: gravity inversion, NVDR-THDR, fault identification, virtual drill, 3-Dimensional visualization modeling based on GOCAD, Tianjin

CLC Number: 

  • P631.1
[1] 于鹏,王家林,吴健生. 二度半长方体组合模型的重力模拟退火反演[J]. 地球物理学报,2007, 50(3):882-889. Yu Peng, Wang Jialin, Wu Jiansheng. An Inversion of Gravity Anomalies by Using a 215 Dimensional Rectangle Gridded Model and the Simulated Annealing Algorithm[J]. Chinese Journal of Geophysics, 2007, 50(3):882-889.
[2] 刘彦,吕庆田,李晓斌,等. 基于模型降阶的贝叶斯方法在三维重力反演中的实践[J]. 地球物理学报,2015, 58(12):4727-4739. Liu Yan, Lü Qingtian, Li Xiaobin, et al. 3D Gravity Inversion Based on Bayesian Method with Model Order Reduction[J]. Chinese Journal of Geophysics, 2015, 58(12):4727-4739.
[3] 冯旭亮,王万银,刘富强,等. 裂陷盆地基底双界面模式二维重力反演[J]. 地球物理学报,2014, 57(6):1934-1945. Feng Xuliang, Wang Wanyin, Liu Fuqiang, et al. 2D Gravity Inversion of Basement Relief of Rift Basin Based on a Dual Interface Model[J]. Chinese Journal of Geophysics, 2014, 57(6):1934-1945.
[4] Renata R C, Peter C H, Iata A S, et al. Basement Structures over Rio Grande Rise from Gravity Inversion[J]. Journal of South American Earth Sciences, 2017, 75:85-91.
[5] Mohammad R, Ali M, Ali N K. Fast 3D Inversion of Gravity Data Using Solution Space Prior Conditioned Lanczos Bidiagonalization[J]. Journal of Applied Geophysics, 2017, 136:42-50.
[6] 高秀鹤, 黄大年, 孙思源,等. 重力梯度数据协克里金三维反演确定岩脉倾向[J]. 吉林大学学报(地球科学版), 2017,47(2):589-596. Gao Xiuhe, Huang Danian, Sun Siyuan, et al. Identify the Dip Angle of the Dipping Dike Model Based on Cokriging Inversion of Gravity Gradient Data[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):589-596.
[7] 王丹丹, 李世臻, 周新桂, 等. 大兴安岭地区突泉盆地高精度重磁电特征及其构造格架[J]. 吉林大学学报(地球科学版), 2016, 46(1):240-253. Wang Dandan, Li Shizhen, Zhou Xingui, et al. Lithology Lithofacies Identification and Deep Structure of Tuquan Basin in Great Xinggan Range Area Based on High-Precision Gravity-Magnetic-Electrical Survey[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1):240-253.
[8] 张聪, 石砥石, 张子亚, 等. 云南楚雄盆地西部高精度重磁电特征及基底特征[J]. 吉林大学学报(地球科学版), 2018, 48(3):863-871. Zhang Cong, Shi Dishi, Zhang Ziya, et al. Basement Structure of Western Chuxiong Basin in Yunnan Province:Using High-Precision Gravity-Magnetic-Electrical Survey[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):863-871.
[9] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2):507-516. Ma Guoqing, Meng Qingfa, Huang Danian. Structure Identification by Gravity Anomaly in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):507-516.
[10] 张冲, 黄大年, 秦朋波, 等. 重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版), 2017, 47(5):1533-1542. Zhang Chong, Huang Danian, Qin Pengbo, et al. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5):1533-1542.
[11] Schneider A, Gerke H H, Maurer T. 3D Initial Sediment Distribution and Quantification of Mass Balances of An Artificially-Created Hydrological Catchment Based on Dems from Aerial Photographs Using GOCAD[J]. Physics and Chemistry of the Earth, 2011, 36(1/2/3/4):87-100.
[12] Ni X D, Chen K. Study on the Conversion of GOCAD Models to FLAC3D Models[J]. Applied Mechanics and Materials, 2014, 501/504:2527-2531.
[13] 郑国磊,徐新学,李世斌,等. 天津市重力数据三维可视化反演建模研究[J]. 物探化探计算技术,2015, 37(5):571-577. Zheng Guolei, Xu Xinxue, Li Shibin, et al. Constructing 3D Visualization Model With Gravity Data of Tianjin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(5):571-577.
[14] 孙先达,王璞珺,索丽敏,等. 松辽盆地火山岩储层三维可视化描述[J]. 吉林大学学报(地球科学版), 2007, 37(6):1272-1278. Sun Xianda, Wang Pujun, Suo Limin, et al. 3D Visualization Description of the Volcanic Rock Reservoir in the Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(6):1272-1278.
[15] 郑国磊, 徐新学, 袁航,等. 基于GOCAD软件的天津市大寺新家园海河教育园区三维可视化建模研究[J]. 地球物理学进展, 2017,32(5):2261-2267. Zheng Guolei, Xu Xinxue, Yuan Hang, et al. 3-Dimensional Visualization Modeling Research on Dasi New Home-Haihe River Education Garden in Tianjin Based on GOCAD Platform[J]. Progress in Geophysics, 2017, 32(5):2261-2267.
[16] 林承焰, 王杨, 杨山, 等. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1):307-317. Lin Chengyan, Wang Yang, Yang Shan, et al. 3D Modeling of Digital Core Based on X-Ray Computed Tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1):307-317.
[17] 张宝一, 杨莉, 陈笑扬, 等. 基于图切地质剖面的区域成矿地质体三维建模与资源评价:以桂西南地区锰矿为例[J]. 吉林大学学报(地球科学版), 2017, 47(3):933-948. Zhang Baoyi, Yang Li, Chen Xiaoyang, et al. Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections:A Case Study of Manganese Deposits in Southwestern Guangxi, China[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3):933-948.
[18] 李继军,汪启年. 重磁电综合解释方法在天津城市三维地质结构调查中的应用[J]. 物探与化探,2007, 31(5):444-450. Li Jijun, Wang Qinian. The Application of Combined Gravity-Magnetic-Electric Method to the Urban Three-Dimensional Geological Structure Survey in Tianjin[J]. Geophysical and Geochemical Exploration, 2007, 31(5):444-450.
[19] 姜夫爵,陈敏,王正科. 天津地区的断裂构造特征[J]. 西北地质,2010, 43(2):143-149. Jiang Fujue, Chen Min, Wang Zhengke. Characteristics of Fault Structure in Tianjin Area[J]. Northwestern Geology, 2010, 43(2):143-149.
[20] 李世斌,马为,徐新学,等. 天津市地球物理场特征及基底构造研究[J]. 物探与化探,2015, 39(5):937-943. Li Shibin, Ma Wei, Xu Xinxue, et al. Characteristics of Geophysical Field and Basement Structure of Tianjin[J]. Geophysical and Geochemical Exploration, 2015, 39(5):937-943.
[21] 天津市地矿局. 天津市区域地质志[M]. 北京:地质出版社,1992. Tianjin Municipal Bureau of Geology and Mineral Resource. Regional Geology of Tianjin[M]. Beijing:Geological Publishing House, 1992.
[22] Wang W Y, Pan Y, Qiu Z Y. A New Edge Recog-nition Technology Based on the Normalized Vertical Derivative of the Total Horizontal Derivative for Potential Field Data[J]. Applied Geophysics, 2009, 6(3):226-233.
[1] Wang Taihan, Huang Danian, Ma Guoqing, Li Ye, Lin Song. Three-Dimensional Fast Gravity Inversion Using Parallel Preconditioned Algorithm [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 384-393.
[2] Li Xueyuan, He Manchao. Planning on Region-Division of Tianjin Geothermal Reservoirs and Approval System for Geothermal Well [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 546-551.
[3] Zhao Lin, Zheng Yi, Mao Guozhu, Guo Hua. Spatial Distribution of Nitrogen and Phosphorus in Dredger Fill at Tianjin Reclamation Land Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 255-264.
[4] CAI Jian-hui, YAN Guo-han, MU Bao-lei, REN Kang-xu, LI Feng-tang, YANG Bin. Geochronology and Geochemistry of Sungezhuang Alkaline Complex in Jixian County, Tianjin [J]. J4, 2011, 41(6): 1901-1913.
[5] LI Fa-wen, FENG Ping, ZHANG Chao. Vertically-Mixed Runoff Model and Application in Beisan River of Tianjin [J]. J4, 2011, 41(2): 459-464.
[6] DENG Hu-cheng,ZHOU Wen,QIU Dong-zhou,XIE Run-cheng. Oil Sand-Forming Conditions and Evaluation on Resource of Oil Sand in Tianjingshan Structure in Northwest Part of Sichuan Basin [J]. J4, 2008, 38(1): 69-0075.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Xiangwen, Zhang Zhiguo, Wang Keyong, Sun Jiapeng, Yang Jibo, Yang He. Characteristics of Ore-Forming Fluid and Genesis of Baoxinggou Gold Deposit in North of Great Xing'an Range[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1071 -1084 .
[2] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105 -1120 .
[3] Zhao Xilin, Jiang Yang, Xing Guangfu, Yu Shengyao, Peng Yinbiao, Huang Wencheng, Wang Cunzhi, Jin Guodong. Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1135 -1153 .
[4] Zhang Fengjun, Liu Zhehua, Su Xiaosi, Lü Cong, Liu Jialu. Effects of Soil Types and Composition on Oxidative Degradation of Volatile Chlorinated Hydrocarbons by Thermally Activated Persulfate[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1212 -1220 .