Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (6): 1648-1659.doi: 10.13278/j.cnki.jjuese.20190245

Previous Articles    

Discussion on Sources of Metallogenic Materials in the 26°S Hydrothermal Field, Southern Mid-Atlantic Ridge

Fan Lei1,2, Wang Guozhi1,3, Shi Xuefa4, Astrid Holzheid2, Basem A. Zoheir2   

  1. 1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
    2. Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany;
    3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    4. Key Lab of Marine Sedimentary and Environment Geology/The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, Shandong, China
  • Received:2019-11-21 Published:2020-12-11
  • Supported by:
    Supported by Project of China Ocean Mineral Resources R & D Association (DY135-S2-2-05, DY125-12-R-01) and National Natural Science Foundation of China (41072082)

Abstract: A large amount of metal sulfide debris, sedimentary mud, pillow basalt, inactive and active black smoker was found in the Southern Mid-Atlantic Ridge at 26°S segment (SMAR 26°S). The melt inclusions, sulfur isotopic data and copper isotopic data of collected samples, including basalt, chimney debris and massive sulfide, were well studied. The results show that the polymetallic sulfides, such as chalcopyrite, pyrite and magnetite, adhere to the bubble wall of melt inclusions in the phenocrysts of basalts, indicating that the ore-forming metallic elements and sulfur derived from the volatile-rich melt. These ore-forming elements may enter into the volatile phase and precipitate during the magma degassing. The role of sulfur in SMAR 26°S was examined by utilizing sulfur isotope. Isotope composition for pyrites in chimney debris and massive sulfides ranges from 3.0‰-3.9‰ in δ34SV-CDT, which points to a mixing process between sulfur from magmatic fluid and the sulfur from seawater sulfate. The sulfur isotopes in SMAR 26°SV-CDT show the same variations as those of other hydrothermal vent systems on the Southern Mid-Atlantic Ridge, but all samples are relatively depleted in 34S relative to other hydrothermal fields, reflecting the greater relative importance of the magmatic fluid. The monomineral Cu isotopic compositions of chalcopyrite are positive with the range of 0.171‰-0.477‰, indicating that the δ65Cu values obtained for chalcopyrite are close to those for source rock (i.e. 0 for basalts), and characterized by slight 65Cu-rich and low fractionation. The characteristics of the hydrothermal fluid and the source of metal are recorded by the combination data of the sulfur isotope with copper isotope and the melt inclusions. All the evidence shows the lower contribution of seawater sulfate and indicates that the ore-forming fluid and metallic elements derive mainly from magmatic-hydrothermal fluid.

Key words: Southern Mid-Atlantic Ridge, 26°S hydrothermal field, melt inclusions, sulfur isotope, copper isotope

CLC Number: 

  • P744
[1] Hannington M D, De Ronde C, Petersen S. Modern Sea-Floor Tectonics and Submarine Hydrothermal Systems[J]. Economic Geology, 2005, 100:111-141.
[2] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of High H2 and CH4 Vent Fluids Issuing from Ultramafic Rocks at the Rainbow Hydrothermal Field (36°14'N, MAR)[J]. Chemical Geology, 2002, 191(4):345-359.
[3] Douville E, Charlou J L, OelkerS E H, et al.The Rainbow Vent Fluids (36°14'N, MAR):The Influence of Ultramafic Rocks and Phase Separation on Trace Metal Content in Mid-Atlantic Ridge Hydrothermal Fluids[J]. Chemical Geology, 2002, 184(1/2):37-48.
[4] Pitman Ⅲ W C,Heirtzler J R. Magnetic Anaomalies over the Pacific-Antarctic Ridge[J]. Science, 1996, 154:1164-1171.
[5] Hedenquist J W, Lowenstern J B. The Role of Magmas in the Formation of Hydrothermal Ore Deposits[J]. Nature, 1994, 370:519-527.
[6] Lowenstern J B, Mahood G A, Rivers M L, et al. Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase[J]. Science, 1991, 252:1405-1409.
[7] Yang K H, Scott S D. PossibleContibution of Metal-Rich Magmatic Fluid to a Seafloor Hydrothermal System[J]. Nature, 1996, 383:420-423.
[8] Von Damm K L. Seafloor Hydrothermal Activity:Black Smoker Chemistry and Chimneys[J]. Annual Review of Earth and Planetary Sciences, 1990, 18:173-204.
[9] Cathles L M. A Capless 350 Degrees C Flow Zone Model to Explain Megaplumes, Salinity Variations, and High-Temperature Veins in Ridge Axis Hydrothermal Systems[J]. Economic Geology, 1993, 88(8):1977-1988.
[10] 方捷,孙静雯,徐宏庆,等. 北大西洋中脊海底多金属硫化物资源预测[J].地球科学进展, 2015, 30(1):60-68. Fang Jie, Sun Jingwen, Xu Hongqing, et al. Prediction of Seafloor Polymetallic Sulphides Resources in the North Atlantic Ridge Area[J]. Advances in Earth Science, 2015, 30(1):60-68.
[11] 戴宝章, 赵葵东, 蒋少涌.现代海底热液活动与块状硫化物矿床成因研究进展[J].矿物岩石地球化学通报,2004, 23(3):246-254. Dai Baozhang, Zhao Kuidong, Jiang Shaoyong. Modern Sea-Floor Hydrothermal Activity and Genesis of Massive Sulfide Deposit:An Overview[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(3):246-254.
[12] Goodfellow W D, Franklin J M. Geology, Mineralogy, and Chemistry of Sediment-Hosted Clastic Massive Sulfides in Shallow Cores, Middle Valley, Northern Juan de Fuca Ridge[J]. Economic Geology, 1993, 88(8):2038-2068.
[13] Herzig P M, Petersen S, Hannington M D. Geochemistry and Sulfur-Isotope Composition of the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158:47-70.
[14] 石学法, 李兵, 叶俊, 等.南大西洋中脊热液活动及形成机制[J].矿物学报, 2015, 35(增刊1):782-783. Shi Xuefa, Li Bing, Ye Jun. Hydrothermal Activity and Formation Mechanism in the South Mid-Atlantic Ridge[J]. Acta Mineralogica Sinica, 2015,35(Sup.1):782-783.
[15] Ryan W B F, Carbotte S M, Coplan J O, et al. Global Multi-Resolution Topography (GMRT) Synthesis Data Set[J], Geochemistry, Geophysics, Geosystems, 2009, 10(3), Q03014.
[16] Carbotte S, Welch S M, Macdonald K C. Spreading Rates, Rift Propogation, and Fracture Zone Offset Histories During the Past 5 My on the Mid-Atlantic Ridge:25°S-27°30'S and 31°S-34°30'S[J]. Marine Geophysical Researches, 1991, 13(1):51-80.
[17] Niu Y L, Batiza R. Magmatic Processes at a Slow Spreading Ridge Segment:26°S Mid-Atlantic Ridge[J]. AGU of Geophysical Research, 1994, 99(10):19719-19740.
[18] Devey C W. SoMARTherm:The Mid-Atlantic Ridge 13°S-33°S[M]. Bremen:DFG-Senatskommission für Ozeanographie, 2014.
[19] Lin J, Purdy G M, Schouten H, et al. Evidence for Focused Magmatic Accretion Along the Mid-Atlantic Ridge[J]. Nature,1990, 344:627-632.
[20] Grindlay N R, Fox P J, Macdonald K C. Second-Order Ridge Axis Discontinuities in the South Atlantic:Morphology, Structure and Evolution[J]. Marine Geophysical Researches, 1991, 13(1):21-49.
[21] Michael P J, Forsyth D W, Blackman D K, et al. Mantle Control of a Dynamically Evolving Spreading Center:Mid-Atlantic Ridge 31°S-34°S[J]. Earth and Planetary Science Letters, 1994, 121(3/4):451-468.
[22] GEBCO Compilation Group. GEBCO 2018 Grid[DB/OL].,2018.
[23] Regelous M, Niu Y, Abouchami W, et al. Shallow Origin for South Atlantic Dupal Anomaly from Lower Continental Crust:Geochemical Evidence from the Mid-Atlantic Ridge at 26°S[J]. Lithos, 2009, 112(1/2):57-72.
[24] 牛耀龄.全球构造与地球动力学:岩石学与地球化学方法应用实例[M].北京:科学出版社,2013:1-307. Niu Yaoling. Global Structure and Geodynamics-Examples of Petrology and Geochemistry Applications[M]. Beijing:Science Press, 2013:1-307.
[25] Peters M, Strauss H, Farquhar J, et al.Sulfur Cycling at the Mid-Atlantic Ridge:A Multiple Sulfur Isotope Approach[J]. Chemical Geology, 2010, 269(3/4):180-196.
[26] Othman D B, Luck J M, Bodinier J L, et al. Cu-Zn Isotopic Variations in the Earth's Mantle[J]. Geochimica et Cosmochimica Acta, 2006, 70(Sup. l):A46.
[27] 李霓,樊祺诚.岩浆脱气作用研究[C]//2001年中国地球物理学会年刊:中国地球物理学会第十七届年会论文集.北京:中国地球物理学会, 2001:281. Li Ni, Fan Qicheng. Research on Magmatic Degassing[C]//2001 Annual Journal of Chinese Geophysical Society:Proceedings of the 17th Annual Conference of the Chinese Geophysical Society. Beijing:Chinese Geophysical Society, 2001:281.
[28] 张海桃. 南大西洋中脊19°S附近玄武岩与斜长石斑晶熔融包裹体特征及其对岩浆作用的指示意义[D].青岛:国家海洋局第一海洋研究所, 2015:36-40. Zhang Haitao. Mid-Oceanic Ridge Basalts(MORB) Chemistry and Characteristics of Plagioclase-Hosted Melt Inclusions in the South Atlantic Ridge 19°S and Implications for Magmatic Processes[D]. Qingdao:The First Institute of Oceanography, State Oceanic Administration, 2015:36-40.
[29] 唐鑫,杨耀民,王国芝,等.南大西洋15°S热液区玄武岩中熔融包裹体组成及意义[J].成都理工大学学报(自然科学版),2016, 43(3):363-371. Tang Xin, Yang Yaomin, Wang Guozhi, et al. The Significances and Compositions of Melt Inclusions in the Basalt from South Atlantic 15°S Hydrothermal Field[J]. Journal of Chengdu University of Technology (Sciences & Technology Eition), 2016, 43(3):363-371.
[30] Shinohara H,Kazahaya K, Lowenstern J B. Volatile Transport in a Convecting Magma Column:Implications for Porphyry Mo Mineralization[J]. Geology, 1995, 23(12):1091-1094.
[31] Gemmell J B. Geochemistry of Metallic Trace Elements in Fumarolic Condensates from Nicaraguan and Costa Rican Volcanoes[J]. Journal of Volcanology and Geothermal Research, 1987, 33(1/2/3):161-181.
[32] Symonds R B, Rose W I, Bluth G S, et al. Volcanic Gas Studies:Methods, Results and Applications[J]. Reviews in Mineralogy and Geochemistry, 1994, 30(1):1-66.
[33] Lowenstern J B. Evidence for a Copper-Bearing Fluid in Magma Eruptered at the Valley of Ten Thousand Smokers, Alaska[J]. Conributions to Mineralogy & Petrology, 1993, 114(3):408-421.
[34] Heinrich C A, Ryan C G, Mernagh T P, et al. Segregation of Ore Metals Between Magmatic Brine and Vapor:A Fluid Inclusion Study Using PIXE Microanalysis[J]. Economic Geology, 1992, 87(6):1566-1583.
[35] Yang K, Scott S D. Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System[J]. Nature, 1996, 383:420-423.
[36] Stoiber R E, Rose W I. Fumarole Incrustations at Active Central American Volcanoes[J]. Geochimica et Cosmochimica Acta, 1974, 38(4):495-516.
[37] 冷成彪,张兴春,王守旭,等.岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质评论,2009, 55(1):731-743. Leng Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of Researches on the Evolution of Ore-Forming Fluids and the Vapor Transport of Metals in Magmatic-Hydrothermal Systems[J]. Geological Review, 2009, 55(1):731-743.
[38] Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J]. Economic Geology, 1972, 67(5):551-578.
[39] Shank III W C, Bischoff J L, Rosenbauer R J. Seawater Sulfate Reduction and Sulfur Isotope Fractionation in Basaltic Systems:Interaction of Seawater with Fayalite and Magetite at 200-350℃[J]. Geochimica et Cosmochimica Acta, 1981, 45(11):1977-1995.
[40] Shank III W C. Stable Isotopes in Seafloor Hydrothermal Systems:Vent Fluids, Hydrothermal Deposits, Hydrothermal Alteration and Microbial Processes[C]//Valley J W, Cole D R. Stable Isotope Geochemistry. Washington D C:Mineralogical Society of America and the Geochemical Society:Reviews in Mineralogy and Geochemistry, 2001:469-517.
[41] Ono S, Shanks W C, Rouxel O J, et al. S-33 Constraints on the Seawater Sulfate Contribution in Modern Seafloor Hydrothermal Vent Sulfides[J]. Geochemica et Cosmochimica Acta, 2007, 71(5):1170-1182.
[42] Rouxel O, Fouquet Y, Ludden J N. Copper Isotope Systematics of the Lucky Strike, Rainbow and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 99(3):585-600.
[43] Bogdanow Y A, Bortnikov N S, Vikent I V, et al. Mineralogical-Geochemical Pecularities of Hydrothermal Sulfide Ores and Fluids in the Rainbow Field Associated with Serpentinites, Mid-Atlantic Ridge(36°14'N)[J]. Geology of Ore Deposit, 2002, 44(6):444-473.
[44] Butler I B,Fallick A E, Nesbitt R W. Mineralogy, Sulphur Isotope Geochemistry and the Development of Sulphide Structures at the Broken Spur Hydrothermal Vent Site, 29 Degrees 10'N, Mid-Atlantic Ridge[J]. Journal of the Geological Society, 1998, 155(5):773-785.
[45] Petersen S. The Geochemical and Mineralogical Evolution of the TAG Hydrothermal Field, Mid-Atlantic Ridge, 26°N[J]. TU Bergakademie Freiberg, 2000, 35(2/3):233-259.
[46] Kase K, Yamamoto M, Shibata T. Copper-Rich Sulfide Deposits Near 23°N, Mid-Atlantic Ridge:Chemical Composition, Mineral Chemistry, and Sulfur Isotopes[J]. Ocean Drilling Program Scientific Results, 1990, 106/107/108/109:163-172.
[47] Ree C E, Jenkins W J, Monster J. The Sulfur Isotopic Composition of Ocean Water Sulphate[J]. Geochimica et Cosmochimica Acta, 1978, 42(4):337-381.
[48] 李振清,杨志明,朱祥坤,等. 西藏驱龙斑岩铜矿铜同位素研究[J].地质学报,2009,83(12):1985-1996. Li Zhenqing, Yang Zhiming, Zhu Xiangkun, et al. Cu Isotope Composition of Qulong Porphyry Cu Deposit, Tibet[J]. Acta Geologica Sinica, 2009, 83(12):1985-1996.
[49] 李小虎,初凤友,雷吉江,等.青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨[J].地学前缘,2014,21(1):196-204. Li Xiaohu, Chu Fengyou, Lei Jijiang, et al. The Copper Isotopic Composition of Sulfide Ores and Deposit Genesis of the Dur'ngoi Cu (Zn-Co) Deposit in Qinghai Province, China[J]. Earth Science Frontiers, 2014, 21(1):196-204.
[50] Zhu X K,O'Nios R K, Guo Y, et al. Determination of Natural Cu-Isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Tracers[J]. Chemical Geology,2000,163(1):139-149.
[51] Vance D, Archer C,Bermin J, et al. The Copper Isotope Geochemistry of Rivers and the Oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2):204-213.
[1] Huang Shiting, Yu Xiaofei, Lü Zhicheng, Liu Jiajun, Li Yongsheng, Du Zezhong, Lü Xin, Sun Hairui, Du Yilun. Characteristics of Gold-Bearing Minerals and Compositions of In-Situ Sulfur of Laojinchang Gold Deposit in Beishan, Gansu Province and Its Ore-Forming Implications [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1387-1403.
[2] Zhang Peng, Yang Hongzhi, Li Bin, Kou Linlin, Yang Fengchao. Ore Source, Ore-Forming Age and Geodynamic Setting of Yaojiagou Molybdenum Deposit in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1684-1696.
[3] YUAN Bo, CHEN Shi-yue, YUAN Wen-fang, ZHU Jian-wei. Characteristics of Strontium and Sulfur Isotopes in Shahejie Formation of Jiyang Depression [J]. J4, 2008, 38(4): 613-0617.
[4] ZENG Qing-dong,LIU Jian-ming,JIA Chang-shun,WAN Zhi-min,YU Chang-ming,YE Jie,LIU Hong-tao. Sedimentary exhalative origin of the Baiyinnuoer zinc-lead deposit,Chifeng,inner mongolia:geological and sulfur isotope evidence [J]. J4, 2007, 37(4): 659-0667.
Full text



No Suggested Reading articles found!