Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (5): 1511-1519.doi: 10.13278/j.cnki.jjuese.201605207

Previous Articles     Next Articles

Evaluating Mine Geology Environmental Quality Using Improved SVM Method

Lu Wenxi1,2, Guo Jiayuan1,2, Dong Haibiao1,2, Zhang Yu1,2, Lin Lin1,2   

  1. 1. Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Jilin University, Changchun 130021, China;
    2. College of Environment and Resources, Jilin University, Changchun 130021, China
  • Received:2016-02-03 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by China Geological Survey Bureau Projects(1212011140027,12120114027401)and Jilin University Postgraduate Innovation Fund Project(2015083)

Abstract:

The grid search method, as on kind of traditional evaluation model of SVM, can be influenced by subjective factors on selecting parameters. So in this study, particle swarm algorithm was chosen to optimize the SVM model and optimized SVM model (PSO-SVM) was used to evaluate geological environment of 135 mines in the Chang-Ji-Tu economic zone. It showed that the evaluation results were almost consistent with comprehensive evaluation results, the similiarity reached to 95.56%. Compared to traditional SVM, itreached to 91.11%. Based on the actual situation and comprehensive analysis of three kinds of evaluation results, we found out that PSO-SVM evaluation results were more in line with the actual situation. Optimized SVM model could effectively avoid the influence of human factors and improve the level of mine geological environment assessment, it was feasible and effective in the evaluation. Evaluation results based on the optimized SVM model showed that mine geological environment was affected by human activities in the study area such as mining, 54.1% of the mine suffered serious damage (III grade), 25.9% suffered moderate damage (II level). The evaluation results can provide decisions for environmental restoration in the study area.

Key words: support vector machine (SVM), particle swarm optimization (PSO), mine geological environment quality evaluation, Chang-Ji-Tu economic zone

CLC Number: 

  • P69

[1] 孔志召, 董双发, 姜雪, 等. 基于层次分析法的矿山环境评价:以阜新矿集区为例[J]. 世界地质, 2012,31(2):420-425. Kong Zhizhao, Dong Shuangfa, Jiang Xue, et al. Mine Environmental Assessment by Analytic Hierarchy Process:Taking Fuxin Mine as an Example[J]. Global Geology, 2012,31(2):420-425.

[2] 黄永泉, 危超, 何景媛. 基于灰色关联分析法的江西省矿山环境质量评价[J]. 资源调查与环境, 2012, 33(4):268-273. Huang Yongquan, Wei Chao, He Jingyuan. Mine Environmental Quality Evaluation by Grey Relational Analysis Method in Jiangxi Province[J]. Resources Survey and Environment, 2012, 33(4):268-273.

[3] 罗娟, 陈守余.矿山环境质量评价指标体系及层次分析法评价[J]. 安全与环境工程, 2005, 12(1):9-12. Luo Juan, Chen Shouyu. Mine Environmental Quality Evaluation Index System and Assessment of Analytic Hierarchy Process[J]. Safety and Environmental Engineering, 2005, 12(1):9-12.

[4] 杨梅忠, 刘亮, 高礼让. 模糊综合评判在矿山环境影响评价中的应用[J]. 西安科技大学学报, 2006, 26(4):439-442. Yang Meizhong, Liu Liang, Gao Lirang. Application of Fuzzy Synthesis Evaluation to the Environmental Influence of the West Mineral Exploration[J]. Journal of Xi'an University of Science and Technology, 2006, 26(4):439-442.

[5] 蒋复量, 周科平, 李书娜, 等. 基于粗糙集-神经网络的矿山地质环境影响评价模型及应用[J]. 中国安全科学学报, 2009, 19(8):126-132. Jiang Fuliang, Zhou Keping, Li Shuna, et al. Study on the Model of Mines' Geological Environment Impact Assessment Based on Rough Set and Artificial Neural Network and Its Application[J]. China Safety Science Journal, 2009, 19(8):126-132.

[6] 韩舸, 龚威, 吴婷, 等. 利用粗糙集的滑坡分段位移预测方法:以白家包滑坡为例[J]. 吉林大学学报(地球科学版), 2014,44(3):925-931. Han Ge, Gong Wei, Wu Ting, et al. Using Rough Set Landslide Segment Displacement Prediction Methods:White House Pack Landslide, for Example[J]. Journal of Jilin University(Earth Science Edition), 2014,44(3):925-931.

[7] 何芳, 徐友宁, 袁汉春. 矿山环境地质问题综合评价客观权值确定方法探讨[J]. 中国地质, 2008, 35(2):337-343. He Fang, Xu Youning, Yuan Hanchun. Method for the Determination of Objective Weight-Values in the Comprehensive Evaluation of Mine Environmental Geological Problems[J]. Geology in China, 2008, 35(2):337-343.

[8] 郭凤仪, 郭长娜, 王爱军, 等. 基于粒子群优化支持向量机的煤矿水位预测模型[J]. 计算机工程与科学, 2012, 34(7):177-181. Guo Fengyi, Guo Changna, Wang Aijun, et al. The Forecast Model of Mine Water Discharge Based on Particle Swarm Optimization and Support Vector Machines[J]. Computer Engineering and Science, 2012, 34(7):177-181.

[9] 张俊才, 张静. 使用粒子群算法进行特征选择及对支持向量机参数的优化[J]. 微电子学与计算机, 2012, 29(7):138-141. Zhang Juncai, Zhang Jing. Use PSO to Perform Feature Selection and Parameter Optimization of SVM[J]. Microelectronics and Computer, 2012, 29(7):138-141.

[10] Yan Z,Zhang H R,Du P J.Application of SVM in Analy-zing the Headstream of Gushing Water in Coal Mine[J]. Journal of China University of Mining & Technology(English Edition), 2006, 16(4):433-438.

[11] 李海生. 支持向量机回归算法与应用研究[D]. 广州:华南理工大学, 2005. Li Haisheng.Algorithm and Application Research of Support Vector Machine Regression[D]. Guangzhou:Technology Master Thesis of South China University, 2005.

[12] Zhong Y H, Zhao L, Liu Z B. Using a Support Vector Machine Method to Predict the Development Indices of Very High Water Cut Oilfields[J]. Petroleum Science, 2010(3):379-384.

[13] 原立峰, 周启刚, 马泽忠. 支持向量机在泥石流危险度评价中的应用研究[J]. 中国地质灾害与防治学报, 2007, 18(4):29-33,39. Yuan Lifeng, Zhou Qigang, Ma Zezhong. Application of SVM on Debris Flow Hazard Assessment[J]. The Chinese Journal of Geological Hazard and Control, 2007, 18(4):29-33,39.

[14] 黄鹤, 卢文喜, 伊燕平, 等. 基于支持向量机模型的水质评价研究[J]. 节水灌溉, 2012(2):57-59,63. Huang He, Lu Wenxi, Yi Yanping, et al. Assessment of Water Quality Based on Support Vector Machine Model[J]. Irrigation, 2012(2):57-59,63.

[15] 雷开友. 粒子群算法及其应用研究[D]. 重庆:西南大学, 2006. Lei Kaiyou. Research on Particle Swarm Optimization and Its Application[D]. Chongqing:Southwestern University, 2006.

[16] 张丽平. 粒子群优化算法的理论及实践[D]. 杭州:浙江大学, 2005. Zhang Liping. The Theorem and Practice Apon the Particle Swarm Optimization Algorithm[D]. Hangzhou:Zhejiang University, 2005.

[17] 李娇. 支持向量机参数优化研究[D]. 武汉:华中师范大学, 2011. Li Jiao. Research of Parameter Optimization for Support Vector Machine[D]. Wuhan:Central China Normal University, 2011.

[18] 高卫东, 王正帅. 基于粒子群优化支持向量机的煤层底板突水量等级预测[J]. 煤田地质与勘探, 2012, 40(6):44-47. Gao Weidong, Wang Zhengshuai. Forecast of Inrushed Water Volume Grade from Coal Floor Based on Support Vector Machine with Particle Swarm Optimization[J]. Coal Geology and Exploration, 2012, 40(6):44-47.

[19] 朱裕生, 郑大瑜, 韦昌山, 等. 矿山危机程度评价的指标体系[J]. 资源产业, 2004, 6(4):30-32. Zhu Yusheng, Zheng Dayu, Wei Changshan, et al. The Index System of the Crisis Level Evaluation for Resources Crisis Mines[J]. Resources and Industries, 2004, 6(4):30-32.

[20] 矿山地质环境保护与恢复治理方案编制规范(2011版):DZ/T 0223-2011[S].北京:中国标准出版社,2011. Mine Geological Environment Protection and Recovery Control Scheme Compilation Specification(2011 Edition):DZ/T 0223-2011[S].Beijing:China Standard Publisher,2011.

[21] 郭小荟, 马小平. 基于Matlab的支持向量机工具箱[J]. 计算机应用与软件, 2007, 24(12):57-59. Guo Xiaohui, Ma Xiaoping. Support Vector Machines Toolbox in Matlab Environment[J]. Computer Applications and Software, 2007, 24(12):57-59.

[1] Xin Xin, Chen Shengbo, Qin Wenhan, Li Donghui, Lu Tianqi, Tian Fenfen. Hapke Model Parameter Inversion of Apollo 16 Landing Area and Model Sensitivity Analysis [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 934-940.
[2] Liu Jinghua, Wang Wenhua, Chen Shengbo, Zhou Dapeng. Analysis of APXS Characteristic X-Ray Energy Spectrum Information of Chang'e-3 Yutu Lunar Rover [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 445-450.
[3] Xu Zemin, Mei Xuefeng, Wang Lirong, Zhang Youwei, Zeng Qiang, Guo Lili. Precipitation Temporal and Variability of Landslide Early Warning Research: A Case Study on Touzhai Gully in Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 154-162.
[4] Song Zhi, Deng Ronggui, Chen Zeshuo, Feng Wei. Physical Simulation and Early Identification of Dadu River Blocking Due to Moxi River Debris Flow [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 163-170.
[5] Su Shengrui, Li Peng, Wang Qi, Su Weiwei, Zhang Ying. Physical Simulation Experimental Research on the Deformation Law and Mechanical Mechanism of Imbricated Thrust Fault:with Longmenshan Fault as an Example [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 249-258.
[6] Xue Qunwei, Liu Yanhui, Tang Can. Early Warning Statistical Model of Sudden Geological Hazards and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1614-1622.
[7] Wang Hongde,Gao Youlong,Xue Xingqiao,Jin Xiaohao,Wang Gang. Optimal Placement of Monitoring Points at Typical Landslide [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 858-866.
[8] Peng Shuaiying,Li Guangjie,Peng Wen,Ma Jianquan,Wang Xuedong,Qin Shengwu. Mining Subsidence Forecast Method Based on Improved Genetic Algorithm and Holt-Winters Model [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 515-520.
[9] LIU Jing-jing, TANG Chuan, CHENG Zun-lan, LIU Yu. Impact of Temperature on Glacier-Lake Outbursts in Tibet [J]. J4, 2011, 41(4): 1121-1129.
[10] ZHANG Yi-chen, NAI Lei, MENG Fan-qi, WANG Yan-liang, WANG Ji-yu, WANG Li-chun. Application of Extension Theory Evaluation Model Based on Optimal Combination Weighting Law [J]. J4, 2011, 41(4): 1110-1115.
[11] ZHANG Hai-yan, WANG Xin-min, YIN Hui, ZHANG Yi-chen, WANG Yan-liang, WANG Li-chun. Threshold Regressive Model and Cluster Analysis of Sediment-Related Disaster [J]. J4, 2011, 41(2): 529-535.
[12] MENG Fan-qi, LI Guang-jie, QIN Sheng-wu, WANG Qian, MA Jian-quan. Zoning of Debris Flow Hazard Degree with Weight-of-Evidence Method [J]. J4, 2010, 40(6): 1380-1384.
[13] LI Wei-zhong, WU Chong-long, TAN Zhao-hua. Geological Hazard Exploration Information System for Three Gorges Reservoir Area [J]. J4, 2006, 36(03): 424-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!