Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (2): 580-588.doi: 10.13278/j.cnki.jjuese.201702301

Previous Articles     Next Articles

Application of BP Neural Network Based on Genetic Algorithm in the Inversion of Density Interface

Zhang Dailei, Huang Danian, Zhang Chong   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-08-07 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National High Technology Research and Development Program ("863" Program)of China (2014AA06A613)

Abstract: The method of BP neural network has achieved good results in the inversion of 2D density interface, however, the converging speed and inversion accuracy would decrease when it is used to inverse 3D density interface due to more complicated model and more parameters. Genetic algorithm is used to optimize the process of choosing weights and thresholds of BP network in this paper in order to improve inversion results. Then a better network model is obtained and this model will be utilized in the inversion of density interface model. This method could increase inversion accuracy as well as reduce calculation time, and better inversion results would be achieved. At last the method is utilized to inverse the depth of Moho in some region in France and the application effect is good. It is illustrated that BP neural network based on genetic algorithm has benign application value and research prospect in the inversion of density interface.

Key words: BP neural network, genetic algorithm, inversion of density interface, network training, optimization

CLC Number: 

  • P312.1
[1] Van der Bann M, Jutten C. Neural Networks in Geo-physical Applications[J]. Society of Exploration Geophysists, 2000, 65(4):1032-1047.
[2] Russell B. Neural Network Applications in Geophysics[C]//CSEG National Convention. Cakgary:Hampon-Russell Software, 2005:339-341.
[3] Hajian A, Ardestani E V, Lucas C. Depth Estimation of Gravity Anomalies Using Hopfield Neural Networks[J]. Journal of the Earth & Space Physics, 2011, 37(2):1-9.
[4] Nagendra R, Prasad P V S, Bhimasankaram V L S. Forword and Inverse Computer Modeling of a Gravity Field Resulting from a Density Interface Using Parker-Oldenberg Method[J]. Computer & Sciences, 1996, 22(3):227-237.
[5] 陈东敬,张新兵. 带模拟退火的拟BP神经网络在伊朗某地区重力资料反演中的应用[J]. 勘探地球物理进展,2005, 28(3):215-218. Chen Dongjing, Zhang Xinbing. The Application of Quasi-BP Neural Network with Simulated Annealing in the Inversion of Gravity Data in Some Region of Iran[J]. Progress in Exploration Geophysics, 2005, 28(3):215-218.
[6] 朱自强,程方道,黄国祥. 同时反演两个三维密度界面的拟神经网络BP算法[J]. 石油物探,1995, 34(1):76-85. Zhu Ziqiang, Cheng Fangdao, Huang Guoxiang. Quasi Neural Network BP Algorithm for Simultaneous Inversion of 3-D Density Interface[J]. Geophysical Prospecting for Petroleum, 1995, 34(1):76-85.
[7] 张新兵,王家林,陈冰,等. BP, Hopfield神经网络在位场反演中的应用比较[J]. 物探化探计算技术,2007, 29(2):162-166. Zhang Xinbing, Wang Jialin, Chen Bing, et al. The Application Comparison of BP, Hopfield Neural Network in the Inversion of Potential Field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(2):162-166.
[8] 郭文斌,朱自强,鲁光银. 重力异常的BP神经网络三维物性反演[J]. 地球物理学进展,2012, 27(2):409-416. Guo Wenbin, Zhu Ziqiang, Lu Guangyin. 3-D Gravity Inversion for Physical Properties Using BP Network[J]. Progress in Geophysics, 2012, 27(2):409-416.
[9] 侯祥林,陈长征,虞和济,等. 神经网络权值和阈值的优化方法[J]. 东北大学学报(自然科学版),1999, 20(4):447-450. Hou Xianglin, Chen Changzheng, Yu Heji, et al. Optimum Method About Weights and Thresholds of Neural Network[J]. Journal of Northeastern University (Natural Science), 1999, 20(4):447-450.
[10] 张国翊,胡铮. 改进BP神经网络模型及其稳定性分析[J]. 中南大学学报(自然科学版),2011, 42(1):115-124. Zhang Guoyi, Hu Zheng. Improved BP Neural Network Model and Its Stability Analysis[J]. Journal of Central South University (Science and Technology), 2011, 42(1):115-124.
[11] 刘洪林,胡建,王金山,等. GA+BP神经网络在薄互层储层预测中的应用[J]. 物探与化探,2004, 28(5):460-463. Liu Honglin, Hu Jian, Wang Jinshan, et al. The Application of GA+BP Hybrid Neural Network to Inter-Bed Deposit Prediction[J]. Geophysical & Geochemical Exploration, 2004, 28(5):460-463.
[12] 李琼,李勇,李正文,等. 基于GA-BP理论的储层视裂缝密度地震非线性反演方法[J]. 地球物理学进展,2006, 26(2):465-471. Li Qiong, Li Yong, Li Zhengwen, et al. A Seismic Nonlinear Inversion for Apparent Fracture Density of Hydrocarbon Reservior Based on GA-BP Theory[J]. Progress in Geophysics, 2006, 26(2):465-471.
[13] 柳建新,童孝忠,李爱勇,等. MT资料反演的一种实数编码混合遗传算法[J]. 中南大学学报(自然科学版),2007, 38(1):160-163. Liu Jianxin, Tong Xiaozhong, Li Aiyong, et al. A Real Coded Hybrid Genetic Algorithm in Magnetotelluric Sounding Data Inversion[J]. Journal of Central South University (Science and Technology), 2007, 38(1):160-163.
[14] 柯小平,王勇,许泽厚,等. 青藏东缘三维Moho界面的位场遗传算法反演[J]. 大地测量与地球动力学,2006, 26(1):101-104. Ke Xiaoping, Wang Yong, Xu Zehou, et al. 3D Moho Depth Inversion of Eastern Tibetan Plateau from Gravity Data with Genetic Algorithm[J]. Journal of Geodesy and Geodynamics, 2006, 26(1):101-104.
[15] 徐黎明,王清,陈剑平,等. 基于BP神经网络的泥石流平均流速预测[J]. 吉林大学学报(地球科学版), 2013, 43(1):186-191. Xu Liming, Wang Qing, Chen Jianping, et al. Forecast for Average Velocity of Debris Flow Based on BP Neural Network[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1):186-191.
[16] 张明君,张化光. 基于遗传算法优化的神经网络PID控制器[J]. 吉林大学学报(工学版),2005, 35(1):92-96. Zhang Mingjun, Zhang Huaguang. Neural Network PID Controller Optimized by GA[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(1):92-96.
[17] 王贝贝,郝天珧. 具有已知深度点的二维单一密度界面的反演[J]. 地球物理学进展,2008, 23(3):834-838. Wang Beibei, Hao Tianyao. The Inversion of Two-Dimensional Mono-Density Interface with Several Known Control Points[J]. Progress in Geophysics, 2008, 23(3):834-838.
[18] 胡立天,郝天珧. 带控制点的三维密度界面反演方法[J]. 地球物理学进展,2014, 29(6):2498-2503. Hu Litian, Hao Tianyao. The Inversion of Three-Dimensional Density Interface with Control Points[J]. Progress in Geophysics, 2014, 29(6):2498-2503.
[19] 刘银萍,孟令顺. 利用重力异常研究虎林盆地的构造分区和基底形态[J]. 吉林大学学报(地球科学版),2007, 37(增刊1):36-39. Liu Yinping, Meng Lingshun. Using Gravity Anomaly Study Structure Division and Basement Morphology of the Hulin Basin[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(Sup. 1):36-39.
[20] 焦新华,陈化然,吴燕冈,等. 天津地区地壳物性界面的计算及深部构造特征[J]. 吉林大学学报(地球科学版),2006, 36(4):616-621. Jiao Xinhua, Chen Huaran, Wu Yangang, et al. The Calculation and Study of Petrophysical Property Interfaces and Their Deep Structural Feature in Tianjin Area[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(4):616-621.
[1] Zhang Bing, Guo Zhiqi, Xu Cong, Liu Cai, Liu Xiwu, Liu Yuwei. Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1244-1252.
[2] Xiao Fan, Chen Jianguo. Application of PPC Model Combined with RCGA to Identify and Extract Geochemical Anomaly [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1319-1330.
[3] Lu Wenxi, Guo Jiayuan, Dong Haibiao, Zhang Yu, Lin Lin. Evaluating Mine Geology Environmental Quality Using Improved SVM Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1511-1519.
[4] Liu Peng, Wang Weifeng, Meng Lei, Jiang Shuai. Joint Optimization of Coal-Bed Methane and Tight Gas in the Upper Paleozoic of the Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 692-701.
[5] Liu Xia, Chen Chen, Zhao Yuting, Wang Xin. Multi-Wavelet Decomposition and Reconstruction Based on Matching Pursuit Algorithm Fast Optimized by Particle Swarm [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1855-1861.
[6] Wu Ming, Wu Jianfeng, Shi Xiaoqing, Liu Jie, Chen Gan, Wu Jichun. New Harmonic Oscillator Genetic Algorithm for Efficient Groundwater Optimization and Management [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1485-1492.
[7] Yu Chu, Zhang Yilong, Meng Ruifang, Cao Wengeng. Optimization Design of the Shallow Groundwater Dynamic Monitoring Network in Hetao Plain [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1173-1179.
[8] Du Runlin, Liu Zhan. Gravity Anomaly Extraction for Hydrocarbon Based on Particle Swarm Optimization and Cellular Neural Network [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 926-933.
[9] Liu He,Zhang Hongqiang,Liu Bin. A Prediction Method for the Deformation of Deep Foundation Pit Based on the Particle Swarm Optimization Neural Network [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1609-1614.
[10] Zhao Liping, Bao Weimin,Zhang Kun. Linearized Calibration of Xin’anjiang Model Parameters [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 301-309.
[11] Liu Shuang, Chen Guoxiong, Liu Tianyou. Improved Ant Colony Optimization and Its Application in Prospecting for Granite Intrusion in Nanling Region [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2005-2017.
[12] Peng Shuaiying,Li Guangjie,Peng Wen,Ma Jianquan,Wang Xuedong,Qin Shengwu. Mining Subsidence Forecast Method Based on Improved Genetic Algorithm and Holt-Winters Model [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 515-520.
[13] Qin Ning, Li Zhenchun, Yang Xiaodong, Zhang Kai, Wang Jun. Pre-Stack Migration Velocity Analysis Based on Sequent Optimization of Common Scattering Point Gathers and Angle Domain Common Imaging Gathers [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 623-631.
[14] Zeng Qinqin, Wang Yonghua, Wu Wenxian. Fast Imaging of 2D Magnetic Anomaly by Particle Swarm Optimization and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 616-622.
[15] Xu Liming, Wang Qing, Chen Jianping, Pan Yuzhen. Forcast for Average Velocity of Debris Flow Based on BP Neural Network [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 186-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!