Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (5): 1365-1382.doi: 10.13278/j.cnki.jjuese.201705104
Previous Articles Next Articles
Men Lanjing1, Sun Jinggui2, Wang Haojun1, Chai Peng2, Zhao Keqiang2, Gu Alei2, Liu Chengxian1
CLC Number:
[1] Hedenquist J W, Arribas R A, Gonzalez U E. Exploration for Epithermal Gold Deposits[J]. Reviews in Economic Geology, 2000, 13:245-277. [2] Chai P, Sun J G, Xing S W, et al. Early Cretaceous Arc Aagmatism and High-Sulphidation Epithermal Porphyry Cu-Au Mineralization in Yanbian Area, Northeast China:The Duhuangling Example[J]. International Geology Review, 2015, 57 (9/10):1267-1293. [3] 张晓秋.吉林省汪清县九三沟金矿床地质特征和成因研究[D].长春:吉林大学,2014:1-65. Zhang Xiaoqiu. Geological Characteristics and Genesis of Jiusangou Gold Deposit, Wangqing, Jilin Province.[D].Changchun:Jilin University, 2014:1-65. [4] 张晓秋,李碧乐. 吉林汪清九三沟金矿床矿床成因[J].世界地质,2014, 33(2):407-417. Zhang Xiaoqiu, Li Bile. Genesis of Jiusangou Gold Deposit of Wangqing,Jilin[J].Global Geology, 2014, 33(2):407-417. [5] 周志宇,李翱鹏,张晓锦. 吉林汪清九三沟金矿地质特征[J]. 吉林地质, 2013, 32(4):51-53. Zhou Zhiyu, Li Aopeng, Zhang Xiaojin. Geological Features of Jiusangou Gold Deposit in Wangqing, Jilin Province[J]. Jilin Geology, 2013, 32(4):51-53. [6] 王长兵,陈跃军,张宇峰,等. 吉林延边杜荒岭金矿流体包裹体特征与矿床成因[J]. 世界地质,2013,32(4):717-724. Wang Changbing, Chen Yuejun, Zhang Yufeng, et al. Characteristics of Fluid Inclusion and Implications of Ore Genesis of Duhuangling Gold Deposit, in Yanbian Area, Jilin[J]. Global Geology, 2013,32(4):717-724. [7] 柴鹏,孙景贵,门兰静,等. 延边地区九三沟金矿床赋矿围岩锆石的U-Pb年龄与成岩成矿时代[J]. 岩石矿物学杂志,2012, 31(5):633-640. Chai Peng, Sun Jinggui, Men Lanjing, et al. U-Pb Dating of Zircons from Host Rocks of the Jiusangou Gold Deposit in Yanbian Area and Determination of Rock-Forming and Ore-Forming Epochs[J]. Acta Petrologica et Minerallogica, 2012, 31(5):633-640. [8] 殷茜,卿敏,朴星海,等. 吉林延边杜荒岭金矿床成矿流体地球化学[J]. 黄金地质,2010,11(31):16-19. Yin Qian, Qing Min, Piao Xinghai, et al. Geohemical Characteristics of the Ore-Forming Fluids in Duhuangling Gold Deposit, Yanbian Area, Jilin Province[J]. Gold Geology, 2010,11(31):16-19. [9] 赵羽军, 孙景贵,王清海,等.吉林延边地区浅成热液金(铜)矿床的40Ar/39Ar激光探针测年与成矿时代讨论[J]. 地学前缘,2010,17(2):156-169. Zhao Yunjun, Sun Jinggui, Wang Qinghai, et al. 40Ar/39Ar Laser Probe Dating and Discussion on Metallogenic Epoch of Epithemal Au-Cu Deposit in Yanbian Area of Jilin[J]. Earth Science Frontiers, 2010, 17(2):156-169. [10] 赵海,崔学武,徐伦先.吉林汪清九三沟金矿床地质及同位素特征探讨[J]. 黄金科学技术,2008,16(1):48-51. Zhao Hai, Cui Xuewu, Xu Lunxian. Discussion on Geology and Isotope Characters of Jiusangou Gold Deposit, in Wangqing, Jilin Province[J]. Gold Science and Technology, 2008,16(1):48-51. [11] 怀宝峰,王晓勇,宋丙剑,等. 吉林省杜荒岭金矿床地质特征及成矿规律浅析[J].黄金科学技术,2007,15(3):19-23. Huai Baofeng, Wang Xiaoyong, Song Bingjian, et al. Geological Features and Prospecting Direction of Duhuangling Gold Deposit, Jilin[J]. Gold Science and Technology, 2007,15(3):19-23. [12] 崔学武,王晓勇,金同和,等. 吉东杜荒岭金矿区围岩蚀变与金矿化的关系[J]. 黄金地质, 2002, 8(2):36-39. Cui Xuewu, Wang Xiaoyong, Jin Tonghe, et al. Discussion on Relationship of the Wall Rock Alteration and the Mineralization of Gold Deposit in Duhuangling Gold Deposit Area, Eastern Jilin[J]. Gold Geology, 2002, 8(2):36-39. [13] 孙景贵,门兰静,陈冬,等. 岩浆作用对岩浆热液金铜成矿制约的元素地球化学和锆石CL图像记录:以延边小西南岔富金铜矿床为例[J]. 矿物岩石,2009,29(3):43-52. Sun Jinggui, Men Lanjing, Chen Dong, et al. Constraints of Magmatism on the Ore-Forming Process of Magmatic Hydrothermal Gold-Rich Copper Deposits as Recorded from the Element Geochemistry and Zircon CL Image Features:A Case Study of the Xiaoxinancha Gold-Rich Copper Deposit, Yanbian, Jilin Province[J]. Journal of Mineralogy and Petrology, 2009, 29(3):43-52. [14] 靳克. 延边地区中生代火山岩的岩石学和地球化学:对构造体制转换与岩石圈深部物质组成的制约[D].长春:吉林大学,2003:1-65. Jin Ke. Petrology and Geochemistry of Mesozoic Volcanic Rocks in Yanbian Area:Constraints on Transformation of Tectonic System and Composition of Lithosphere[D]. Changchun:Jilin University, 2003:1-65. [15] 张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D]. 长春:吉林大学,2002:1-132. Zhang Yanbin. The Isotopic Geochronoligic Frame of Granitic Magmatism in Yanbian Area[D]. Changchun:Jilin University, 2002:1-132. [16] Zhang Y B, Wu F Y, Wilde S A, et al.Zircon U-Pb Ages and Tectonic Implications of ‘Early Paleozoic’ Granitoids at Yanbian, Jilin Province, Northeast China[J]. Island Arc, 2004, 13(4):484-505. [17] 孙景贵, 陈雷, 赵俊康,等. 延边小西南岔富金铜矿田燕山期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 矿床地质, 2008,27(3):319-328. Sun Jinggui, Chen Lei, Zhao Junkang, et al. SHRIMP U-Pb Dating of Zircons from Late Yanshanian Granitic Complex in Xiaoxinancha Gold-Rich Copper Orefield of Yanbian and Its Geological Implications[J].Mineral Deposits[J]. 2008, 27(3):319-328. [18] 孟庆丽,周永昶,柴社力. 中国延边东部斑岩-热液脉型铜金矿床[M]. 长春:吉林科学技术出版社,2001. Meng Qingli, Zhou Yongchang, Chai Sheli. The Porphyry and Hydrothermal Lode Gold and Copper Deposits in the Eastern Yanbian Region of China[M].Changchun:Jilin Science and Technology Press, 2001. [19] Hall D L. Freezing Point Depression of NaCl-KCl-H2O Solution[J]. Economic Geology, 1988, 83:197-202. [20] Sterner S M. Synthetic Fluid Inclusion:V:Solubility Relations in the System NaCl-KCl-H2O Under Vapor-Saturated Conditions[J]. Geochim Cosmochim Acta, 1988, 52:989-1005. [21] Ruggieri G, Lattanzi P, Luxopo S S, et al. Geology, Mineralogy, and Fluid Inclusion Data of the Furtei High-Sulfidation Gold Deposit, Sardinia, Italy[J]. Economic Geology, 1997, 92:1-19. [22] Roedder E, Bodnar R J. Geologic Pressure Deter-minations from Fluid Inclusion Studies[J]. Annual Review of Earth and Planetary Science,1980, 8:263-301. [23] Sourirajan S, Kennedy G C. The System H2O-NaCl at Elevated Temperatures and Pressures[J]. American Journal of Science, 1962, 260:115-141. [24] Stefanova E, Driesner T, Zajacz Z, et al. Melt and Fluid Inclusions in Hydrothermal Veins:The Magmatic to Hydrothermal Evolution of the Elatsite Porphyry Cu-Au Deposit, Bulgaria[J]. Economic Geology, 2014, 109:1359-1381. [25] Nagao K, Ogata A, Miura Y N, et al. ArIsotope Analysis for K-Ar Dating Using Tow Modified-VG5400 Mass SpectrometersI:Isotope Dilution Method[J].Journal of the Mass Spectrometry Society of Japan, 1996,44(1):39-61. [26] Matsuda J, Matsumoto T, Sumino H, et al. The 3He/4He Ratio of the New Internal He Standard of Japan (HESJ)[J]. Geochemical Journal, 2002,36 (2):191-195. [27] Schlosser P, Winckler G. Noble Gases in Ocean Water and Sediments[J].Reviews in Mineralogy and Geochemistry, 2002, 47 (1):701-730. [28] Stuart F, Turner G,Taylor R. He/ArIsotope Syste-matics of Fluid Inclusions:Resolving Mantle and Crustal Contributions to Hydrothermal Fluid[J]. Noble Gas Geochemistry and Cosmochemistry, 1994, 3(8):261-277. [29] Stuart F M, Burnard P G, Taylor R P, et al. Resolving Mantle and Crustal Contributions to Ancient Hydrothermal Fluids:He-Ar Isotopes in Fluid Inclusions from Dae Hwa W -Mo Mineralization, South. Korea[J]. Geochimica et Cosmochimica Acta, 1995, 59 (22):4663-4673. [30] Kendrick M A, Burgess R, Pattrick R A D, et al. FluidInclusion Noble Gas and Halogen Evidence on the Origin of Cu-Porphyry Mineralizing Fluids[J]. Geochimica et Cosmochimica Acta, 2001, 65 (16):2651-2668. [31] Stoffregen R E. Genesis of Acid-Sulfate Alteration and Au-Cu-Ag Mineralization at Summitville, Colorado[J]. Economic Geology, 1987, 82:1575-1591. [32] 赵珊茸,边秋娟,凌其聪. 结晶学及矿物学[M]. 北京:高等教育出版社,2004. Zhao Shanrong, Bian Qiujuan, Ling Qicong. Crys-Tallography and Mineralogy[M]. Beijing:Higher Education Press, 2004. [33] Hedenquist J W, Henley R W. The Importance of CO2 on Freezing Point Measurements of Fluid Inclusions:Evidence from Active Geothermal Systems and Implications for Epithermal Ore Deposition[J].Economic Geology, 1985, 80:1379-1406. [34] Crawford M L. Phase Quilibria in Aqueous Fluid Inclusions[J]. Mineralogical Association of Canada Short Course, 1981, 6:75-97. [35] 陈雷,孙景贵,赵俊康,等. 延边五凤五星山金(银) 矿床的流体包裹体特征及成因模式[J]. 吉林大学学报(地球科学版), 2008, 38(4):566-575. Chen Lei, Sun Jinggui, Zhao Junkang, et al. Characteristics of Fluid Inclusions and Genetic Model of Wufeng-Wuxingshan Gold (Silver) Deposit, Yanbian[J]. Journal of Jilin University(Earth Science Edition),2008, 38(4):566-575. [36] Arribas Jr A. Characteristics of High-Sulfidation Epithermal Deposits, and Their Relation to Magmatic Fluid[J]. Mineralogical Association of Canada Short Course, 1995,23:419-454. [37] Chouinard A, Williams-Jones A E, Leonardson R W. Geology and Genesis of the Multistage High-Sulfidation Epithermal Pascua Au-Ag-Cu Deposit, Chile and Argentina[J]. Economic Geology, 2005, 100:463-490. [38] Hedenquist J W, Matsuhisa Y, Izawa E. Geology, Geochemistry and Origin of High-Sulfidation Cu-Au Mineralization in the Nansatsu District, Japan[J]. Economic Geology, 1994, 89:1-30. [39] Stoffregen R E. Genesis of Acid-Sulfate Alteration and Au-Cu-Ag Mineralization at Summitville, Colorado[J]. Economic Geology, 1987, 82:1575-1591. [40] Vennemann T W, Muntean J L, Kesler S E,et al. Stable Isotope Evidence for Magmatic Fluids in the Pueblo Viejo Epithermal Silica-Alunite Au-Ag Deposit, Dominican Republic[J]. Economic Geology,1993, 88:55-71. [41] Berger B R, Henley R W. Magmatic-Vapor Expan-sion and the Formation of High-Sulfidation Gold Deposits:Structural Controls on Hydrothermal Alteration and Ore Mineralization[J].Ore Geology Reviews, 2011, 39:75-90. [42] Audétat A, Günther D, Heinrich C A. Formation of A Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions[J]. Science, 1998, 279:2091-2094. [43] Audétat A, Pettke T, Heinrich C A, et al. The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions[J]. Economic Geology, 2008, 103:877-908. [44] Ulrich T, Gunther D, Heinrich C A. Gold Concen-trations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits[J]. Nature, 1999, 399:676-679. [45] Williams-Jones A E,Heinrich C A. Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits[J]. Economic Geology, 2005, 100:1287-1312. [46] 韩润生,李波,倪培,等. 闪锌矿流体包裹体显微红外测温及其矿床成因意义:以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版),2016, 46(1):91-104. Han Runsheng, Li Bo, Ni Pei, et al. Infrared Micro-Thermometry of Fluid Inclusion in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit, Yunnan Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1):91-104. [47] Migdisov A A, Williams-Jones A E, Suleimenov O M. Solubility of Chlorargyrite (AgCl) in Water Vapor at Elevated Temperatures and Pressures[J]. Geochimica et Cosmochimica Acta, 1999, 63:3817-3827. [48] Archibald S, Migdisov A A, Williams-Jones A E. The Stability of Au-Chloride Complexes in Water Vapor at Elevated Temperatures and Pressures[J]. Geochimica et Cosmochimica Acta, 2001, 65:4413-4423. [49] Archibald S M, Migdisov A A, Williams-Jones A E. An Experimental Study of the Stability of Copper Chloride Complexes in Water Vapor at Elevated Temperatures and Pressure[J]. Geochimica et Cosmochimica Acta, 2002, 66:1611-1619. [50] Migdisov A, Williams-Jones A E. A Predictive Model for Transport of Silver Chloride by Aqueous Vapor in Ore-Forming Magmatic-Hydrothermal Systems[J]. Geochimica et Cosmochimica Actamica,2013,104:123-135. [51] Hurtig N, Williams-Jones A E. An Experimental Study of the Transport of Gold Through Hydration of AuCl in Aqueous Vapour and Vapour-Like Fluids[J]. Geochimica et Cosmochimica Acta, 2014, 127:305-325. [52] Zezin D, Migdisov A A, Williams-Jones A E. The Solubility of Gold in H2O-H2S Vapour at Elevated Temperature and Pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75:5140-5153. [53] Crerar D A, Barnes H L. Ore Solution Chemistry V, Solubilities of Chalcopyrite and Chalcocite Assemblages in Hydrothermal Solution at 200℃ to 350℃[J]. Economic Geology, 1976, 71:772-794. [54] Gammons C H, Barnes H L. The Solubility of Ag2S in Near-Neutral Aqueous Sulfide Solutions at 25 to 300℃[J]. Geochimica et Cosmochimica Acta, 1989, 53:279-290. [55] Mountain B W, Seward T M. Hydrosulfide/Sulfide Complexes of Copper:I:Experimental Confirmation of the Stoichiometry and Stability of Cu (HS)2-to Elevated Temperatures[J]. Geochimica et Cosmochimica Acta, 2003, 67:3005-3014. [56] Stefánsson A, Seward T M. Gold(I) Complexing in Aqueous Sulphide Solutions to 500℃ at 500 Bar[J]. Geochimica et Cosmochimica Acta, 2004, 68:4121-4143. [57] Williams-Jones A E, Bowell RJ, Migdisov A A. Gold in Solution[J]. Elements, 2009, 5:281-287. [58] Roedder E. Fluid Inclusions Reviews in Mineralogy[J]. Mineral Society of America, 1984, 12:644. |
[1] | Li Xiangwen, Zhang Zhiguo, Wang Keyong, Sun Jiapeng, Yang Jibo, Yang He. Characteristics of Ore-Forming Fluid and Genesis of Baoxinggou Gold Deposit in North of Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1071-1084. |
[2] | Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651. |
[3] | Chen Ruili, Chen Zhengle, Wu Junjie, Liang Zhilu, Han Fengbin, Wang Yong, Xiao Changhao, Wei Liangxi, Shen Tao. Fluid Inclusions and S-Pb Isotopes in Zaozigou Gold Deposit, Hezuo in Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 87-104. |
[4] | He Chengzhong, Zhang Dehui, Wu Mingqian, Xia Yan, Zhang Rongzhen, Hu Tiejun. Fluid Inclusion of Yaojiagou Porphyry Mo Deposit in Qingchengzi in Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1717-1731. |
[5] | Chen Jingyuan, Wang Changming, He Xinyu, Chen Liang, Wu Bin, Wang Qiao, Zhang Duan, Yao Enya, Dong Mengmeng. Characteristics of Geology, Fluid Inclusions and Stable Isotope of Wafang Pb-Zn Deposit in Henan [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1383-1404. |
[6] | Zhang Yan, Han Runsheng, Wei Pingtang, Qiu Wenlong. Fluid Inclusion Features and Physicochemical Conditions of the Kuangshanchang Pb-Zn Deposit, Huize, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 719-733. |
[7] | Zhao Yande, Qi Yalin, Luo Anxiang, Cheng Dangxing, Li Jihong, Huang Jinxiu. Application of Fluid Inclusions and Dating of Authigenic Illite in Reconstruction Jurassic Reservoirs Hydrocarbon Filling History,Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1637-1648. |
[8] | Wang Li, Sun Liwei. Characteristics of Ore-Forming Fluid of the Sizhuang Gold Deposit in Shandong Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1697-1710. |
[9] | Zhang Yanjun, Sun Fengyue, Li Bile, Li Liang, Chen Yang. Fluid Inclusions Characteristecs and Ore Genesis of Sancha Gold Deposit in Huangzhong County, Qinghai Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1342-1353. |
[10] | Wang Xi, Duan Mingxin, Ren Yunsheng, Hou Zhaoshuo, Sun Deyou, Hao Yujie. Characteristics of Fluid Inclusions and Mineralization Age of Badaguan Cu-Mo Deposit in Erguna Area, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1354-1367. |
[11] | Wu Haizhi, Han Runsheng, Wu Peng. Properties and Evolution of Ore-Forming Fluid in Liuju Sandstone Type Copper Deposit, Chuxiong Basin in Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 398-411. |
[12] | Wang Keyong, Fu Lijuan, Wei Liemin, Wang Zhigao. Characteristics of Hydrothermal Superimposed Mineralization and Source of Ore-Forming Fluids in Zhenzigou Pb-Zn Deposit,Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 80-90. |
[13] | Han Runsheng, Li Bo, Ni Pei, Qiu Wenlong, Wang Xudong, Wang Tiangang. Infrared Micro-Thermometry of Fluid Inclusions in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 91-104. |
[14] | Zhang Zhihui, Zhang Da, Di Yongjun, Li Xingjian, Que Chaoyang, Ma Xianping, Du Zezhong. Characteristics of Fluid Inclusions and Primary Metallogenic Mechanism of Jiaochong Au-S Deposit in Tongling Area, Anhui [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1657-1666. |
[15] | Ding Qingfeng, Fu Yu, Wu Changzhi, Dong Lianhui, Qu Xun, Cao Changsheng, Xia Mingyi, Sun Hongtao. Evolution of the Ore-Forming Fluid of the Awanda Gold Deposit in Southwestern Tianshan Orogenic Belt, Xinjiang [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 142-155. |
|