Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (6): 1855-1864.doi: 10.13278/j.cnki.jjuese.201706302

Previous Articles     Next Articles

Application of Shearlet Transform for Suppressing Random Noise in GPR Data

Wang Xiannan, Liu Sixin, Cheng Hao   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-03-26 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by the Natural Science Foundation of China (41076076), the National High-Tech R&D of China (2013AA064603) and the Graduate Innovation Fund of Jilin University (2016201)

Abstract: Random noise is one of the serious problems encountered during the GPR data processing. It directly influences the accuracy and reliability of the processing results. In order to remove the random noise effectively and retain the useful information, the authors propose a random noise suppression method in GPR data by using Shearlet transform. As a non-adaptive geometric-analysis method with multi-directions and multi-scales, Shearlet transform can be used to approximately represent the high-dimensional curves with singular points. In Shearlet domain, GPR data appear more sparsely. Through the threshold de-noising method, random noises can be suppressed effectively; so that the signal to noise ratio (SNR) is improved by 4 dB, and the useful information is retained to the maximum extent. The effectivity and accuracy of the Shearlet-transform threshold de-noising method are validated by the theoretical and practical data.

Key words: Shearlet transform, ground penetrating radar, random noise, hard threshold

CLC Number: 

  • P631.4
[1] 曾照发,刘四新,王者江,等. 探地雷达方法原理及应用[M]. 北京:科学出版社,2006. Zeng Zhaofa, Liu Sixin, Wang Zhejiang, et al. Ground Penetrating Radar:Principle and Application[M]. Beijing:Science Press, 2006.
[2] 邹海林,宁书年,邹华胜. 采用不同预处理方法的GPR图像去噪效果分析[J]. 地球物理学进展,2005,20(2):469-475. Zou Hailin, Ning Shunian, Zou Huasheng. Perfoemance Analysis of GPR Image De-Noising Based on Different Pre-Processing Methods[J]. Progress in Geophysics, 2005, 20(2):469-475.
[3] Baili J, Lahouar S, Hergli M, et al. GPR Singal De-Noising by Discrete Wavelet Transform[J]. NDT&E International, 2009,42:696-703.
[4] Jeng Y, Li Y W, Chen C S, et al. Adaptive Filtering of Random Noise in Near-Surface Seismic and Ground Penetrating Radar Data[J]. Journal of Applied Geophysics, 2009, 68:36-46.
[5] 康冶,于承业,贾卧,等. f-x域去噪方法研究[J]. 石油地球物理勘探,2003,38(2):136-138. Kang Ye, Yu Chengye, Jia Wo, et al.f-x Domain De-Noising Research[J]. Oil Geophysical Prospecting, 2003, 38(2):136-138.
[6] Russel B, Hampson S, Chun J. Noise Elimination and the Radon Transform:Part 1[J]. The Leading Edge, 1990, 11(9):31-37.
[7] 张军华,陆基孟. 小波变换方法在地震资料中去噪和提高分辨率中的应用[J]. 石油大学学报(自然科学版),1997,21(1):18-21. Zhang Junhua, Lu Jimeng. Application of Wavelet Transform in Removing Noise and Improving Resolution of Seismic Data[J]. Journal of University of Petroleum (Edition of Natural Science), 1997,21(1):18-21.
[8] Mckemma J, Boyd G D, Thurston R N. Plate Theory Solution for Guided Flexural Acoustic Waves Along the Tip of a Wedge[J]. IEEE Transactions on Sonics and Ultrasonics, 1974, 21(3):178-186.
[9] Mckemma J, Mckenna J. Flexural Acoustic Waves Along the Edge of a Plate[J]. IEEE Transactions on Sonics and Ultrasonics, 1974, 21(4):296-297.
[10] 段志强. 梳状波在频谱分析仪中的应用研究[J]. 电子质量,2010,12:47-56. Duan Zhiqiang. Research on Application of the Comb Wave in the Spectrum Analyzer[J]. Assessmnet and Application, 2010, 12:47-56.
[11] 杨明,尹勇,彭玉华,等. Beamlet变换与多尺度线特征提取[J]. 电子学报,2007, 35(1):100-103. Yang Ming, Yin Yong, Peng Yuhua, et al. Beamlet Transform and Multiscale Linear Feature Extraction[J]. Acta Electronica Sinica, 2007, 35(1):100-103.
[12] 杨晓慧,焦李成,李伟. 基于第二代bandelets的图像去噪[J]. 电子学报,2006, 34(11):2063-2067. Yang Xiaohui, Jiao Licheng, Li Wei. Second Generation Bandelets Based Image Denoising[J]. Acta Electronica Sinica, 2006, 34(11):2063-2067.
[13] 包乾宗,高静怀,陈文超. 面波压制的Ridgelet域方法[J].地球物理学报,2007, 50(4):1210-1215. Bao Qianzong, Gao Jinghuai, Chen Wenchao. Ridgelet Domain Method of Ground-Roll Suppression[J]. Chinese Journal of Geophysics, 2007, 50(4):1210-1215.
[14] Do M N, Vetterli M. The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J]. IEEE Trans Image Process, 2005, 14:2091-2106.
[15] 仝中飞,王德利,刘冰. 基于Curvelet变换阈值法的地震数据去噪方法[J]. 吉林大学学报(地球科学版),2008, 38(增刊1):48-52. Tong Zhongfei, Wang Deli, Liu Bing. Seismic Data Denoise Based on Curvelet Transform with the Threshold Method[J]. Hournal of Jilin University (Earth Science Edition), 2008, 38(Sup.1):48-52.
[16] 王德利,仝中飞,唐晨,等. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理,2010,7(4):315-324. Wang Deli, Tong Zhongfei,Tang Chen, et al. An Iterative Curvelet Thresholding Algorithm for Seismic Random Noise Attenuation[J]. Applied Geophysics, 2010,7(4):315-324.
[17] 孟阁阁,王德利,陈鑫. 基于三维曲波变换的地震数据去噪方法研究[J]. 石油物探,2014,53(3):314-323. Meng Gege, Wang Deli, Chen Xin. Study on Seismic Data Denoising Method Based on 3D Curvelet Transform[J]. Geophysical Prospecting Forpetroleum, 2014,53(3):314-323.
[18] Guo K, Labate D, Lim W, et al. Wavelets with Composite Dilations and Their MRA Properties[J]. Appl Comput Harmon Anal, 2006, 20:202-236.
[19] Guo K, Labate D, Lim W, et al. The Theory of Wavelets with Composite Dilations[J]. Harmonic Analysis and Applications, 2006, 78:231-250.
[20] Guo K, Labate D, Lim W, et al, Wavelets with Composite Dilations[J]. Electron Res Announc Amer Math Soc, 2004, 10:78-87.
[21] 王德营,李振春,黄建平,等. 一种分尺度的面波压制方法[J]. 石油学报,2014,35(2):303-309. Wang Deying, Li Zhenchun, Huang Jianping, et al. A Surface Wave Suppression Method Based on Scale-Partition[J]. Acta Petrolei Sinica, 2014, 35(2):303-309.
[22] Easley G, Labate D, Lim W Q. Sparse Directional Image Representations Using the Discrete Shearlet Transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1):25-46.
[23] Yi S, Labate D, Easley G R, et al. A Shearlet App-roach to Edge Analysis and Detection[J]. IEEE Transcations on Image Processing, 2009, 18(5):929-941.
[24] 魏扬,那彦,邓昆明. 基于多尺度几何分析的医学图像融合[J]. 电子科技,2014,27(8):19-21. Wei Yang, Na Yan, Deng Kunming. Medical Image Fusion Based on Multiscale Geometric Analysis[J]. Electronic Science and Technology, 2014, 27(8):19-21.
[25] 朱华生,徐晨光. Shearlet变换域自适应图像去噪算法[J].激光与红外,2012, 42(7):811-814. Zhu Huasheng, Xu Chenguang. Adaptive Image Denoising Algorithm Based on Shearlet Transform[J]. Laser & Infrared, 2012,42(7):811-814.
[26] 胡海智,孙辉,邓承志,等,基于Shearlet变换的图像去噪算法[J]. 计算机应用,2010(6):1562-1564. Hu Haizhi, Sun Hui, Deng Chengzhi, et al. Image De-Noising Algorithm Based on Shearlet Transform[J]. Journal of Computer Applications, 2010(6):1562-1564.
[27] 刘成明,王德利,王通,等. 基于Shearlet变换的地震随机噪声压制[J].石油学报,2014, 35(4):692-699. Liu Chengming, Wang Deli, Wang Tong, et al. Random Seismic Noise Attenuation Based on the Shearlet Transform[J]. Actc Petrolei Sinica, 2014, 35(4):692-699.
[28] 刘成明,王德利,胡斌,等. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版),2016, 46(6):1855-1864. Liu Chengming, Wang Deli, Hu Bin, et al. Seismic Data Interpolation Based on Sparse Constraint in Shearlet Domain[J]. Journal of Jilin Universityv(Earth Science Edition),2016, 46(6):1855-1864.
[29] Kittipoom P, Kutyniok G, Wang Q L. Construction of Compactly Supported Shearlet Fremes[J], Constructive Approximation, 2012, 35(1):21-27.
[1] Liang Wenjing, Feng Xuan, Liu Cai, Nilot Enhedelihai, Zhang Minghe, Liang Shuaishuai. Development of Multiple-Input and Multiple-Output Polarimetric Stepped-Frequency Ground Penetrating Radar System [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 483-490.
[2] Feng Xuan, Liang Shuaishuai, Enhedelihai Nilot, Zhang Minghe, Dong Zejun, Zhou Haoqiu, Qi Jiahui, Zhao Weichang. Classification and Recognition Technology of Underground Pipelines with Full Polarimetric GPR [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 364-372.
[3] Wang Wentian, Liu Sixin, Lu Qi, Li Hongqing, Fu Lei. 3D Imaging Algorithm of Directional Borehole Radar Based on Improved Residual Method [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 402-410.
[4] Wang Yan, Lu Qi, Liu Cai, She Songsheng, Liu Sixin. Using GPR Antenna-Target Polarization Instantaneous Attribute Analysis Method to Detect LNAPL Contaminated Soil [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 491-500.
[5] Zeng Zhaofa, Li Wenben, Xi Jianjun, Huang Ling, Wang Zhejiang. Inverse Direction Imaging Method of Array Type GPR Based on DOA Estimation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1308-1318.
[6] Liu Chengming, Wang Deli, Hu Bin, Wang Tong. Seismic Data Interpolation Based on Sparse Constraint in Shearlet Domain [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1855-1864.
[7] Liu Xia, Huang Yang, Huang Jing, Duan Zhiwei. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD) [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 262-269.
[8] LIU Cai, YANG Bao-jun, LU Qi, FENG Xuan, LIU Yang, WANG Dian. Fundamental Geophysical Progress on Heilongjiang Plate Tectonics [J]. J4, 2012, 42(5): 1497-1505.
[9] DONG Lie-qan, LI Zhen-chun, LIU Lei, LI Zhi-na, SANG Yun-yun. A Method of Curvelet Threshold Denoising Based on Empirical Mode Decomposition [J]. J4, 2012, 42(3): 838-844.
[10] ZHANG Li-li, LIU Si-xin, WU Jun-jun, JIA Liang, KANG Xiao-tao. Wavelet Extraction of GPR Signals Based on Fractional Fourier Transform [J]. J4, 2012, 42(2): 569-574.
[11] LIN Hong-bo, LI Yue, XU Xue-chun, MA Hai-tao. Time-Frequency Peak Filtering Algorithm for Reducing the Discrete Error [J]. J4, 2011, 41(2): 572-578.
[12] NIE Peng-fei, ZENG Qian, MA Hai-tao, LI Yue, LIN Hong-bo. Reducing Seismic Random Noise:Derivative Operator Constrainted Wiener Filtering [J]. J4, 2010, 40(6): 1471-1478.
[13] GONG Xiang-bo,HAN Li-guo,WANG En-li,Du Li-zhi. Denoising Via High Resolution Radon Transform [J]. J4, 2009, 39(1): 152-0157.
[14] XUE Jian, JIA Jian-xiu,HUANG Hang,YI Bing,ZHANG Liang-huai,ZHANG Yu. Application of GPR in Active Fault Detection [J]. J4, 2008, 38(2): 347-0350.
[15] ZHANG Wen-bo,WEI Wen-bo,JING Jian-en,JIA Zheng-yuan. Application of Ground Penetrating Radar Polarization in the Concrete Structure Detection [J]. J4, 2008, 38(1): 156-0160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!