Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (6): 1855-1864.doi: 10.13278/j.cnki.jjuese.201606304

Previous Articles     Next Articles

Seismic Data Interpolation Based on Sparse Constraint in Shearlet Domain

Liu Chengming, Wang Deli, Hu Bin, Wang Tong   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-03-04 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by National Science and Technology Major Project (2011ZX05023-005-008) and National Natural Science Foundation of China (41374108)

Abstract: Seismic data interpolation for the missing traces forms a crucial step in the seismic processing flow. Interpolation result will affect the subsequent migration imaging and the effect of multiple elimination directly. Shearlet transform is a new multi-scale transform with multi-directions, multi-resolutions, and optimal sparse approximation properties. We propose an accelerate iterative Landweber algorithm for seismic data interpolation based on Shearlet transform, ensuring the precision and improving the computational efficiency at the same time. According to the distribution characteristics of signals and noise, the signal-to-noise ratio could be improved by using a threshold method to suppress random noise, improving the anti-noise capability of our algorithm. Moreover, jittered undersampling is adopted to suppress aliasing. A stylized experiment on synthetic as well as field data show the method is effective and robust.

Key words: Shearlet transform, interpolation, sparse transform, compress sensing, jittered undersampling

CLC Number: 

  • P631.4
[1] Canning A, Gardner G H F. Regularizing 3-D Data Sets with DMO[J]. Geophysics, 2012, 61(4):1103-1114.
[2] Chemingui N, Chemingui N. Handling the Irregular Geometry in Wide-Azimuth Surveys[J]. Seg Technical Program Expanded Abstracts, 1999, 15(1):2106.
[3] Spitz S. Seismic Trace Interpolation in the F-X Do-main[J]. Geophysics, 2012, 56(6):785.
[4] Gulunay N. Unaliased f-k Domain Trace Interpo-lation (UFKI)[J]. Seg Technical Program Expanded Abstracts, 1996, 15(1):2106.
[5] Herrmann F J, Gilles H. Non‐Parametric Seismic Data Recovery with Curvelet Frames[J]. Geophysical Journal International, 2008, 173(1):233-248.
[6] Wang D, Bao W, Xu S,et al. Seismic Data Inter-polation with Curvelet Domain Sparse Constrained Inversion[J]. Journal of Seismic Exploration, 2014, 23(1): 89-102.
[7] 路交通, 曹思远, 董建华. 基于稀疏变换的地震数据重构方法[J]. 物探与化探, 2013, 37(1): 175-179. Lu Jiaotong, Cao Siyuan, Dong Jianhua. A Study of Seismic Data Recovery Based on Sparse Transform[J]. Geophysical & Geochemical Exploration, 2013, 37(1): 175-179.
[8] Wang D L, Tong Z F, Tang C, et al. An Iterative Curvelet Thresholding Algorithm for Seismic Random Noise Attenuation[J]. Applied Geophysics, 2010, 7(4): 315-324.
[9] 刘财,崔芳姿,刘洋,等.基于低信噪比条件下新型Seislet变换的阈值去噪方法[J].吉林大学学报(地球科学版),2015,45(1):293-301. Liu Cai, Cui Fangzi, Liu Yang, et al. Threshold Denoising Method Based on New Seislet Transform in the Condition of Low SNR[J]. Journal of Jilin University (Earth Science Edition),2015,45(1):293-301.
[10] Candè E J, Wakin M B. An Introduction to Compre-ssive Sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
[11] Hennenfent G, Herrmann F J. Simply Denoise: Wa-vefield Reconstruction via Jittered Undersampling[J]. Geophysics, 2008, 73(3): V19-V28.
[12] Herrmann F J, Wang D, Hennenfent G, et al. Cur-velet-Based Seismic Data Processing: A Multiscale and Nonlinear Approach[J]. Geophysics, 2008, 73(1):2220.
[13] Kutyniok G, Lim W Q. Compactly Supported Shear-lets Are Optimally Sparse[J]. Journal of Approximation Theory, 2011, 163(11): 1564-1589.
[14] Kittipoom P, Kutyniok G, Lim W Q. Construction of Compactly Supported Shearlet Frames[J]. Constructive Approximation, 2012, 35(1): 21-72.
[15] Daubechies I, Fornasier M, Loris I. Accelerated Pro-jected Gradient Method for Linear Inverse Problems with Sparsity Constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 746-792.
[16] Guo K, Kutyniok G, Labate D. Sparse Multidimen-sional Representations Using Anisotropic Dilation and Shear Operators[C]//International Conference on the Interaction. Athens: Wavelets and Splines, 2005:189-201.
[17] Labate D, Kutyniok G. Sparse Multidimensional Re-presentation Using Shearlets[C]//Proceedings of SPIE.[S. l.]: The International Society for Optical Engineering, 2005, 5914(1):254-262.
[18] Kutyniok G, Shahram M, Zhuang X. ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm[J]. Siam Journal on Imaging Sciences, 2011, 5(4):1291-1332.
[19] Kittipoom P, Kutyniok G, Lim W Q. Construction of Compactly Supported Shearlet Frames[J]. Constructive Approximation, 2012, 35(1): 21-72.
[20] Vogel C R. Computational Methods for Inverse Pro-blems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2002.
[21] Daubechies I, Defrise M, Mol C D. An Iterative Th-resholding Algorithm for Linear Inverse Problems with a Sparsity Constrains[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
[1] Wang Xiannan, Liu Sixin, Cheng Hao. Application of Shearlet Transform for Suppressing Random Noise in GPR Data [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1855-1864.
[2] Liu Zuodong, Wang Hongjun, Ma Feng, Wu Zhenzhen, Du Shang, Wang Yonghua. Resource Assessment of Heavy Oil Potential Based on Spatial Grid Interpolation Method:A Case Study of Cretaceous Heavy-Oil Deposits in Zagros Fold Belt [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1668-1677.
[3] Yu Chu, Zhang Yilong, Meng Ruifang, Cao Wengeng. Optimization Design of the Shallow Groundwater Dynamic Monitoring Network in Hetao Plain [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1173-1179.
[4] Wang Zhaoguo, Cheng Shunyou, Liu Cai. Error Analysis of Several Two-Dimensional Interpolation Methods in the Geophysical Exploration [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1997-2004.
[5] Xu Minghua, Li Rui, Lu Jiaotong, Meng Shan,Gong Xinglin. Study on the Recovery of Aliasing Seismic Data Based on the Compressive Sensing Theory [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 282-290.
[6] Ye Pei,Li Qingchun. Improvements of Linear Traveltime Interpolation Ray Tracing for the Accuracy and Efficiency [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 291-298.
[7] NAI Lei, PENG Wen, YUAN Ming-zhe, ZHOU Neng-juan. Ground Collapse Prediction of Mined-Out Area Based on EMD and WLS-SVM [J]. J4, 2011, 41(3): 799-804.
[8] LI Xiang-ling, ZHANG Ying-hui, YANG Shan-mou, YUAN Feng, ZHOU Tao-fa. Comparison of Typical Interpolation Methods for Pollution Evaluation of Soil Heavy Metals in Yicheng District, Hefei [J]. J4, 2011, 41(1): 222-227.
[9] ZHANG Ji-feng, TANG Jing-tian, YU Yan, LIU Chang-sheng. Finite Element Numerical Simulation on Line Controlled Source Based on Quadratic Interpolation [J]. J4, 2009, 39(5): 929-935.
[10] ZHANG Dong-liang, SUN Jian-guo. Interpolation Mapping in F-K Demigration [J]. J4, 2009, 39(4): 749-754.
[11] HAN Fu-xing,SUN Jian-guo,YANG Hao. Ray-Tracing of Wavefront Construction by Bicubic Convolution Interpolation [J]. J4, 2008, 38(2): 336-0340.
[12] SUN Jian-guo. F-K Demigration in Media with Constant Velocity:Basic Concepts, Formulas, and Applications in Inhomogeneous Media [J]. J4, 2008, 38(1): 135-0143.
[13] WENG Ai-hua,WANG Xue-qiu. Forward Simulation with High Accuracy of Ground Nuclear Magnetic Resonance [J]. J4, 2007, 37(3): 620-0623.
[14] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method [J]. J4, 2005, 35(04): 515-0519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!