Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (3): 746-754.doi: 10.13278/j.cnki.jjuese.20170238

Previous Articles     Next Articles

Prediction of Consolidation Coefficient Based on Neighborhood Rough Set and Support Vector Machine

Yin Chao1,2, Zhou Aihong2, Yuan Ying2, Wang Shuaiwei3   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. School of Prospecting Technology & Engineering, Hebei GEO University, Shijiazhuang 050031, China;
    3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China
  • Received:2017-12-18 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China(41301015) and Key Projects of Hebei Province Education Department(ZD2015073,ZD2016038)

Abstract: The prediction model of soft soil consolidation coefficient in Hutuo River was established by neighborhood rough set (NRS) and support vector machine(SVM). Based on the modified osmotic oedometer, the consolidation coefficient was determined under different pressures. The soil indices were determined by laboratory tests,and the attributes were reduced by NRS method. Subsequently, by taking the reduced indices as the influencing factors; the prediction model of consolidation coefficient by SVM and back propagation neural network (BPNN) was used to predict the consolidation coefficient of unknown samples,and the results were compared with the measured values. The results show that:the consolidation coefficient can be determined by formula method. The consolidation coefficient prediction model established by SVM and BPNN can be applied to predict the consolidation coefficients, and the prediction accuracy of SVM is about 10% higher than that of BPNN. The results are validated by the standard solution. In summary, the method presented is based on experimental data, the prediction model of consolidation coefficient is established through easily accessible factors, and can predict the consolidation coefficient of other unknown points in this area.

Key words: consolidation coefficient, prediction model, support vector machine, neighbourhood rough set, osmotic oedometer

CLC Number: 

  • TU411
[1] Terzaghi K. Theoretical Soil Mechanics[M]. New York:John Wiley and Sons, 1943.
[2] Duncan J M. Limitation of Conventional Analysis of Consolidation Settlement[J]. Journal of Geotechnical Engineering Division, ASCE, 1993, 199(9):1333-1359.
[3] Olson R E. Settlement of Embankments on Soft Clays[J]. Journal of Geotechnical Engineering, ASCE, 1998, 124(4):278-288.
[4] Lowe J, Jonas E, Obrician V. Controlled Gradient Consolidation Test[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1969, 95(Sup.1):77-97.
[5] 吴义祥. 固结过程中固结系数Cv的变化及其对地面沉降预测的影响[J]. 水文地质工程地质,1988(2):47-49. Wu Yixiang. Change of Consolidation Coefficient and Its Influence on Land Subsidence Forecasting[J]. Hydrogeology & Engineering Geology, 1988(2):47-49.
[6] 林鹏, 许镇鸿, 徐鹏,等. 软土压缩过程中固结系数的研究[J]. 岩土力学, 2003, 24(1):106-112. Lin Peng, Xu Zhenhong, Xu Peng, et al. Research on Consolidation Coefficient of Soft Clay Under Compression[J]. Rock and Soil Mechanics, 2003, 24(1):106-112.
[7] 余闯, 刘松玉. 考虑应力水平的软土固结系数计算与试验研究[J]. 岩土力学, 2004, 25(增刊2):103-107. Yu Chuang, Liu Songyu. Calculation and Experiment on Consolidation Coefficient for Soft Clay Considering Different Stress Levels[J]. Rock and Soil Mechanics, 2004, 25(Sup.2):103-107.
[8] 土工试验规程:SL237-1999[S]. 北京:中国水利水电出版社, 1999. The Civil Engineering Experiment:SL237-1999[S]. Beijing:China Water & Power Press, 1999.
[9] 卢文喜, 郭家园, 董海彪, 等. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5):1511-1519. Lu Wenxi, Guo Jiayuan, Dong Haibiao, et al. Evaluating Mine Geology Environmental Quality Using Improved SVM Method[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1511-1519.
[10] 张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017,47(2):580-588. Zhang Dailei, Huang Danian, Zhang Chong. Application of BP Neural Network Based on Genetic Algorithm in the Inversion of Density Interface[J]. Journal of Jilin University (Earth Science Edition), 2017,47(2):580-588.
[11] 王常明, 田书文, 王翊虹, 等. 泥石流危险性评价:模糊c均值聚类-支持向量机法[J]. 吉林大学学报(地球科学版), 2016, 46(4):1168-1175. Wang Changming, Tian Shuwen, Wang Yihong, et al. Risk Assessment of Debris Flow:A Method of SVM Based on FCM[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1168-1175.
[12] 许小健, 干洪, 张金轮. 差分进化算法及其在固结系数计算中的应用[J]. 地下空间与工程学报,2010, 6(5):958-963,974. Xu Xiaojian, Gan Hong, Zhang Jinlun. Differential Evolution and Its Application in Computing Consolidation Coefficient[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5):958-963,974.
[13] 包太, 刘新荣. 改进的遗传算法求解固结系数[J]. 土木建筑与环境工程, 2009, 31(1):23-26. Bao Tai, Liu Xinrong. Consolidation Coefficient Evaluation Using an Improved Genetic Algorithm[J]. Journal of Civil Architectural & Environmental Engineering, 2009, 31(1):23-26.
[14] 江刚. 遗传算法在固结系数计算中的应用[J]. 土木建筑与环境工程, 2006, 28(1):71-73. Jiang Gang. Genetic Algorithm for the Consolidation Coefficient Evaluation[J]. Journal of Civil Architectural & Environmental Engineering, 2006, 28(1):71-73.
[15] Chen Jiangong, Zhang Yongxing. A Neural Network Method to Evaluate Consolidation Coefficient[J]. Journal of Chongqing University, 2003, 2(1):1-4.
[16] Zhu Honghu, Fu Jianping, Dai Fei. Application of BP Neural Networks in the Prediction of Consolidation Coefficient[C]//IEEE. Advances in Computational Tool for Engineering Applications of the International Conference on IEEE, Lebanon:Zouk Mosbeh, 2009:443-446.
[17] 师旭超, 汪稔, 胡元育,等.渗透固结试验装置的研制[J].岩石力学与工程学报, 2004, 23(22):3891-3895. Shi Xuchao, Wang Ren, Hu Yuanyu, et al. Development of Osmotic Oedometer[J].Chinese Journal of Rock Mechanics and Engineering, 2004,23(22):3891-3895.
[18] 孙丽云, 乐金朝, 刘忠玉,等. 渗透固结试验装置的改进[J]. 实验力学,2010,25(3):353-358. Sun Liyun, Yue Jinchao, Liu Zhongyu, et al. The Improvement of Osmotic Oedometer[J]. Journal of Experimental Mechanics, 2010, 25(3):353-358.
[19] 周爱红, 尹超, 袁颖. 基于主成分分析和支持向量机的砂土渗透系数预测模型[J]. 云南大学学报(自然科学版), 2016, 38(5):742-749. Zhou Aihong, Yin Chao, Yuan Ying. A Permeability Coefficient Prediction Model of Sand Soil Based on Principal Component Analysis and Support Vector Machine[J]. Journal of Yunnan University (Natural Science Edition), 2016, 38(5):742-749.
[20] 曾巧玲, 张惠明, 陈尊伟,等. 软黏土固结系数确定方法探讨[J]. 岩土力学, 2010, 31(7):2083-2110. Zeng Qiaoling, Zhang Huiming, Chen Zunwei, et al. Discussion on Computational Methods for Determining Consolidation Coefficient of Soft Clay[J]. Rock and Soil Mechanics, 2010, 31(7):2083-2110.
[21] Hu Qinghua, Yu Daren, Xie Zongxia. Neighborhood Classifiers[J]. Expert Systems with Applications, 2008, 34(2):866-876.
[22] 胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报, 2008, 19(3):640-649. Hu Qinghua, Yu Daren, Xie Zongxia. Numerical Attribute Reduction Based on Neighborhood Granulation and Rough Approximation[J]. Journal of Software, 2008, 19(3):640-649.
[23] 邓乃扬, 田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京:科学出版社, 2004:117-122. Deng Naiyang, Tian Yingjie. A New Method in Data Mining:Support Vector Machine[M]. Beijing:Science Press, 2004:117-122.
[24] 邰淑彩,孙韫玉,何娟娟. 应用数理统计[M]. 武汉:武汉大学出版社,248-266. Tai Shucai, Sun Yunyu, He Juanjuan. Applied Mathematical Statistics[M]. Wuhan:Wuhan University Press, 248-266.
[25] 张向东,冯胜洋,王长江. 基于网格搜索的支持向量机砂土液化预测模型[J]. 应用力学学报,2011,28(1):24-28,107. Zhang Xiangdong, Feng Shengyang, Wang Changjiang. Support Vector Machine Model for Predicting Sand Liquefaction Based on Grid-Search Method[J]. Chinese Journal of Applied Mechanics, 2011, 28(1):24-28,107.
[26] 王小川, 史峰, 郁磊,等. MATLAB神经网络43个案例分析[M]. 北京:北京航空航天大学出版社, 2013:102-119. Wang Xiaochuan, Shi Feng, Yu Lei, et al. 43 Cases Analysis of MATLAB Neural Network[M]. Beijing:Beihang University Press, 2013:102-119.
[1] Han Qidi, Zhang Xiaotong, Shen Wei. Application of Support Vector Machine Based on Decision Tree Feature Extraction in Lithology Classification [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 611-620.
[2] Lin Jian, Zhang Qifei, Long Wanxue, Zhang Hongwei. Multi-Model Fusion Method for Landslide Early Warning Based on Early Warning Membership Function [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 477-484.
[3] Xu Shouyu, Lu Yan, Wang Ya. Study on Flow Units of Turbidite Fan Low Permeability Reservoir Based on Support Vector Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1330-1341.
[4] Wang Changming, Zhang Suoyu, Li Shuo. Secondary Consolidation Characteristics of Yitong Soft Soil [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 799-804.
[5] Wang Mingchang, Zhang Xinyue, Zhang Xuqing, Wang Fengyan, Niu Xuefeng, Wang Hong. GF-2 Image Classification Based on Extreme Learning Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 373-378.
[6] Zhang Yanjun, Zhang Tong, Yin Renchao, Zheng Jie, Liu Tong, Xie Yangyang. Geothermal Anomaly Areas Exploration and Ground Temperature Prediction Based on 2-Meter Temperature Survey [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 189-196.
[7] Lu Wenxi, Guo Jiayuan, Dong Haibiao, Zhang Yu, Lin Lin. Evaluating Mine Geology Environmental Quality Using Improved SVM Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1511-1519.
[8] Zhang Yanjun, Yu Hai, Li Jianming, Yu Ziwang, Zhang jianing. Prediction Models of Deep Hydrothemal Geothermal Potential Areas Based on GIS: A Case Study of Western Anatolia, Turkey [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 855-864.
[9] Yang Xuefeng, Wang Xuemei, Mao Donglei. Mapping Land Use and Land Cover Through MISR Multi-Angle Imagery in the Lower Tarim River [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 617-626.
[10] Cai Yuqi,Xu Hao,Guo Qingyin,Zhu Pengfei,Wang Yuanzhi,Xie Yingchun. Metallogenic Prognosis and Prospecting Orientation of Granite Type Uranium Deposit in Taoshan Area,Jiangxi Province, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1283-1291.
[11] Peng Yi, He Yuliang, Zeng Tao, Zhong Jiangwen, Xu Guoli, Su Xiaoyan,Chen Jun, Peng Songmin, Li Zhen. Regional Metallogenic and Synthetic Information Prediction Models of Mo Deposits in Henan Province, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1262-1275.
[12] Zhuang Jianqi,Peng Jianbing, Zhang Liyong. Risk Assessment and Prediction of the Shallow Landslide at Different Precipitation in Loess Plateau [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 867-876.
[13] YANG Jia-jia, JIANG Qi-gang, ZHAO Jing, XU Yan, MENG Xiang-chong. Standard Mineral Quantitative Calculation Based on the Improved SVM and Hyperspectral Remote Sensing [J]. J4, 2012, 42(3): 864-871.
[14] NIU Rui-qing, PENG Ling, YE Run-qing, WU Xue-ling. Landslide Susceptibility Assessment Based on Rough Sets and Support Vector Machine [J]. J4, 2012, 42(2): 430-439.
[15] XU Chang-fu, LI Xiong-yan, TAN Feng-qi, YU Hong-yan, LI Hong-qi. Task-Driven Data Mining and Its Application of Identifying the Low Resistivity Oil Reservoir[ [J]. J4, 2012, 42(1): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!