Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (1): 234-242.doi: 10.13278/j.cnki.jjuese.20180302
Dong Shuangshi1, Fu Shaozhu1, Yu Yang2, Li Chaoqun1, Chu Yicong2
CLC Number:
[1] Konstantinou I K, Albanis T A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution:Kinetic and Mechanistic Investigations[J]. Applied Catalysis B:Environmental, 2004, 49(1):1-14. [2] Xue J, Shen Q, Liang W, et al. Controlled Synthesis of Coaxial Core-Shell TiO2/Cu2O Heterostructures by Electrochemical Method and Their Photoelectrochemical Properties[J]. Materials Letters, 2013, 92:239-242. [3] Deng B, Fu S, Zhang Y, et al. Simultaneous Pollutant Degradation and Power Generation in Visible-Light Responsive Photocatalytic Fuel Cell with an Ag-TiO2 Loaded Photoanode[J]. Nano-Structures & Nano-Objects, 2018, 15:167-172. [4] Ma Y, Xiong H, Zhao Z, et al. Model-Based Evaluation of Tetracycline Hydrochloride Removal and Mineralization in an Intimately Coupled Photocatalysis and Biodegradation Reactor[J]. Chemical Engineering Journal, 2018, 351:967-975. [5] 陈宇溪,罗力莎,时峥,等. Ag掺杂型TiO2粉末光催化降解四环素类抗生素废水[J]. 科技创新与应用, 2018, 7(13):36-38. Chen Yuxi, Luo Lisha, Shi Zheng, et al. Photocatalytic Degradation of Tetracycline Antibiotic Wastewater by Ag-Doped TiO2 Powder[J]. Technology Innovation and Application, 2018, 7(13):36-38. [6] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh Electron Mobility in Suspended Graphene[J]. Solid State Communications, 2008, 146(9/10):351-355. [7] Park S, Ruoff R S. Chemical Methods for the Production of Graphenes[J]. Nature Nanotechnology, 2009, 4(4):217. [8] Gadgil B, Damlin P, Kvarnström C. Graphene vs Reduced Graphene Oxide:A Comparative Study of Graphene-Based Nanoplatforms on Electrochromic Switching Kinetics[J]. Carbon, 2016, 96:377-381. [9] Wang P, Tang Y, Dong Z, et al. Ag-AgBr/TiO2/RGO Nanocomposite for Visible-Light Photocatalytic Degradation of Penicillin G[J]. Journal of Materials Chemistry:A, 2013, 1(15):4718-4727. [10] Wei S, Wu R, Jian J, et al. Graphene Oxide/Core-Shell Structured TiO2@TiO2-x Nanocomposites with Highly Efficient Visible-Light Photocatalytic Performance[J]. RSC Advances, 2015, 5:40348-40351. [11] Lee J H, Kim I K, Cho D, et al. Photocatalytic Performance of Graphene/Ag/TiO2 Hybrid Nanocomposites[J]. Carbon Letters, 2015, 16(4):247-254. [12] Li G, Wang T, Zhu, Y, et al. Preparation and Photoelectrochemical Performance of Ag/Graphene/TiO2 Composite Film[J]. Applied Surface Science, 2011, 257(15):6568-6572. [13] Lee M S, Hong S-S, Mohseni M. Synthesis of Photocatalytic Nanosized TiO2-Ag Particles with Sol-Gel Method Using Reduction Agent[J]. Journal of Molecular Catalysis A:Chemical, 2005, 242(1/2):135-140. [14] Xie Y, Meng Y. SERS Performance of Graphene Oxide Decorated Silver Nanoparticle/Titania Nanotube Array[J]. RSC Advance, 2014, 4:41734-41743. [15] 朱遂一,霍明昕,杨霞,等.制备多孔镍负载TiO2薄膜光催化降解喹啉和化工废水[J].吉林大学学报(地球科学版),2012, 42(4):1151-1158. Zhu Suiyi, Huo Mingxin, Yang Xia, et al. Preparation of P-25 Films Immobilized on Porous Nickel and High Photocatalytic for the Degradation of Quinoline and Chemical Wastewater[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4):1151-1158. [16] Zhang Hao, Lü Xiaojun, Li Yueming, et al. P25 Graphene Composite as a High Performance Photocatalyst[J]. ACS Nano, 2010, 4(1):380-386. [17] 袁志军.分光光度法测定四环素片中四环素的含量探究[J]. 中国现代药物应用,2011, 5(5):101-102. Yuan Zhijun. Determination of Tetracycline in Tetracycline Tablets by Spectrophotometry[J]. Chinese Journal of Modern Drug Application, 2011, 5(5):101-102 [18] Hou Y, Gan Y, Yu Z, et al. Solar Promoted Azo Dye Degradation and Energy Production in the Bio-Photoelectrochemical System with a g-C3N4/BiOBr Heterojunction Photocathode[J]. Journal of Power Sources, 2017, 371:26-32. [19] Ding Jie, Bu Yunfei, Ou Man, et al. Facile Decoration of Carbon Fibers with Ag Nanoparticles for Adsorption and Photocatalytic Reduction of CO2[J]. Applied Catalysis B:Environmental, 2017, 202:314-325. [20] Yang J, Liao W, Liu Y, et al. Degradation of Rhodamine B Using a Visible-Light Driven Photocatalytic Fuel Cell[J]. Electrochimica Acta, 2014, 144:7-15. [21] Li K, He Y, Xu Y, et al. Degradation of Rhodamine B Using an Unconventional Graded Photoelectrode with Wedge Structure[J]. Environmental Science & Technology, 2011, 45(17):7401-7407. [22] Aïnouche L, Hamadou L, Kadri A, et al. Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays[J]. Electrochimica Acta, 2014, 133:597-609. [23] Sun C, Wang Y, Su Q, et al. The Impacts of Graphene Concentration and Thickness on the Photocatalytic Performance of Bi12TiO20/Graphene Composite Thin Films[J]. Materials Research Express, 2017, 4(8):1-7. [24] 邹东雷,李婷婷,高梦薇,等. 基于响应面的可见光催化材料制备与优化[J].吉林大学学报(地球科学版),2015, 45(6):1833-1838. Zou Donglei, Li Tingting, Gao Mengwei, et al.Preparation and Optimization of the Photocatalytic Materials Under Visible Light with Response Surface Methodology[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1833-1838. [25] 许颖蘅,应迪文,江璇,等. 光催化燃料电池不同二氧化钛光阳极性能的对比[J]. 环境化学,2016, 15(1):82-88. Xu Yingheng, Ying Diwen, Jiang Xuan, et al. Comparison of Different TiO2 Photoanodes in Photocatalytic Fuel Cells[J]. Environmental Chemistry, 2016, 15(1):82-88. |
[1] | ZHU Sui-yi, HUO Ming-xin, YANG Xia, QU Hai-li, SHAO Chun-yan, BIAN De-jun, DONG Long, SUN Hong-wei. Preparation of P-25 Films Immobilized on Porous Nickel and High Photoca-talytic Activity for the Degradation of Quinoline and Chemical Wastewater [J]. J4, 2012, 42(4): 1151-1158. |
[2] | ZHU Sui-yi, HUO Ming-xin, YANG Xia, DONG Long, WANG Jian, JIN Sheng-wei, LIU Xiu. Photocatalytic Degradation of Quinoline in Aqueous Solution by P-25 Film Coated on Foam Nickel Substrate [J]. J4, 2011, 41(5): 1554-1561. |
[3] | LI Na, XU Zi-li, YU Lian-xiang,WANG Xiao,LI Wen-yan, LIU Xing-juan, DU Yao-guo. Effects of Gas-phase Photocatalytic Oxidation of C7H8 (Toluene)-SO2 on Nano-TiO2/SiO2 [J]. J4, 2007, 37(1): 153-0157. |
[4] | MU Bai-lin,LI Fang-fei,HOU Tian-yi,SUN Shen-mei,WANG Ying-wei,ZU Sheng-nan. Effect of Natural Zeolite Supports for Photoactive TiO2 During the Photodegradation Process [J]. J4, 2006, 36(04): 668-672. |
|