Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (4): 1211-1218.doi: 10.13278/j.cnki.jjuese.20190102

Previous Articles    

Application of Low Temperature TEM to Geological Exploration in Siziwangqi, Inner Mongolia

Bao Suxin1,2,3, Dong Bingyuan1,2,3, Pei Yifeng1,2, Rong Liangliang1,2, Qiu Longqing1,2, Du Shangyu4   

  1. 1. State Key Laboratory of Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
    2. Center of Excellence in Superconducting Electronics, Chinses Academy of Sciences, Shanghai 200050, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130026, China
  • Received:2019-04-30 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (61873256)

Abstract: Transient electromagnetic method (TEM) is widely used in metal mine exploration. Based on the new receiving technology of SQUID (superconducting quantum interference device), the TEM has the advantages of low intrinsic noise (5~7 fT/√Hz) and large bandwidth (>200 kHz). As an important mineral reserve, Siziwangqi in Inner Mongolia is rich in mineral resources. The reliability of SQUID instead of induction coil was verified by comparing the experimental results of the anomalous rings obtained by superconducting receiving system and EM67 TEM instrument. The superconducting TEM method was applied to the northern area of Dajingpo, Siziwangqi, Inner Mongolia. The underground anomalous response information in shallow and deep layers (>2 000 m) was obtained to deduce a continuous low resistivity layer. Combined with the existing geological and geophysical data, the inversion results effectively reveal a north-east trending fault zone at 500 m in the shallow layer near the survey line, and then infer that there is a similar trending fault zone at 2 000 m in the deep layer.

Key words: transient electromagnetic method, superconducting quantum interference device, Siziwangqi, fault zone

CLC Number: 

  • P631
[1] 嵇艳鞠, 林君, 程德福,等. ATEM-Ⅱ瞬变电磁仪数据处理软件的研制与应用[J]. 吉林大学学报(地球科学版), 2003, 33(2):242-245. Ji Yanju, Lin Jun, Cheng Defu, et al. Development and Application of Data Processing Software of ATEM-ⅡTransient Electromagnetic Instrument[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(2):242-245.
[2] 嵇艳鞠, 林君, 于生宝, 等. ATEM瞬变电磁系统在长春市活断层勘探中的应用[J]. 吉林大学学报(地球科学版), 2005, 35(增刊1):103-107. Ji Yanju, Lin Jun, Yu Shengbao, et al. Sounding Application of ATEM Instrument in Changchun Active Fault[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(Sup. 1):103-107.
[3] Spies B R, Eggers D E.The Use and Misuse of Apparent Resistivity in Electromagnetic Methods[J]. Geophysics, 1986, 51(7):1462-1471.
[4] Clarke J. Geophysical Applications of SQUIDS[J]. IEEE Transactions on Magnetics, 1983, 19(3):288-294.
[5] Wang S G, Zhang L H, Wang C J, et al.Application of High Temperature Superconducting Quantum Interference Devices in Transient Electromagnetic Method for Magnetotelluric Soundings[J]. Physica C, 1997, 282/283/284/285/286/287:411-414.
[6] 陈晓东,赵毅,张杰,等.高温超导磁强计在瞬变电磁法中的应用研究[J].地球物理学报,2012, 55(2):702-708. Chen Xiaodong, Zhao Yi,Zhang Jie, et al. The Applications of HTc SQUID Magnetometer to TEM[J]. Chinese Journal of Geophysics, 2012, 55(2):702-708.
[7] Clarke J, Braginski A I. The SQUID Handbook[M]. Weinheim:Wiley-Vch, 2004.
[8] 荣亮亮, 蒋坤, 裴易峰, 等. 适用于瞬变电磁勘探的低温超导磁传感器[J]. 仪器仪表学报, 2016, 37(12):2671-2677. Rong Liangliang, Jiang Kun, Pei Yifeng, et al. Low-Tc SQUID Sensor for Time Domain Electromagnetic Prospecting[J]. Chinese Journal of Scientific Instrument, 2016, 37(12):2671-2677.
[9] 张婉, 刘英会, 朱卫平, 等. 大井坡航空地球物理试验场典型剖面综合地球物理解释[J]. 吉林大学学报(地球科学版), 2016, 46(2):569-580. Zhang Wan, Liu Yinghui, Zhu Weiping, et al.Comprehensive Geophysical Interpretation of Typical Profiles of Aviation Geophysical Test Site at Dajingpo[J]. Journal of Jilin University (Geoscience Edition), 2016, 46(2):569-580.
[10] 彭芳苹, 董良, 葛志广. 航空物探试验场地面地球物理场特征分析[J]. 工程地球物理学报, 2014,11(1):118-122. Peng Fangping, Dong Liang, Ge Zhiguang. The Analysis of Geophysical Characteristics of Airborne Geophysical Testing Ground[J]. Chinese Journal of Engineering Geophysics, 2014, 11(1):118-122.
[11] 李凤仁, 张赋. 内蒙古四子王旗夏尔楚鲁金矿床地质特征及成因[J]. 地质与资源, 2012, 21(4):350-353. Li Fengren, Zhang Fu. Geology and Genesis of the Xiaerchulu Gold Deposit in Inner Mongolia[J]. Geology and Resources, 2012, 21(4):350-353.
[12] 朱卫平, 熊盛青, 刘英会,等. 大井坡航空地球物理试验场选场原则与方法[J]. 物探与化探, 2013, 37(1):98-103. Zhu Weiping, Xiong Shengqing, Liu Yinghui, et al. Selection Principles and Methods of Dajingpo Airborme Geophysical Test Site[J]. Geophysical and Geochemical Exploration, 2013, 37(1):98-103.
[13] 裴易峰,荣亮亮,张懿,等.低温SQUID瞬变电磁法中去除地磁场影响的方法研究[J].地球物理学进展, 2019, 34(2):212-217. Pei Yifeng, Rong Liangliang, Zhang Yi, et al. Study on the Method of Removing the Effect of Geomagnetic Field in Low Temperature SQUID Transient Electromagnetic Method[J]. Progress in Geophysics, 2019, 34(2):212-217.
[14] Ji Y, Du S, Xie L, et al. TEM Measurement in a Low Resistivity Overburden Performed by Using Low Temperature SQUID[J]. Journal of Applied Geophysics, 2016, 135:243-248.
[15] Du S, Zhang Y, Pei Y, et al. Study of Transient Electromagnetic Method Measurements Using a Superconducting Quantum Interference Device as B Sensor Receiver in Polarizable Survey Area[J]. Geophysics, 2018, 83(2):E111-E116.
[1] Jiang Dapeng, He Min, Zhang Xiangtao, Peng Guangrong, Niu Shengli, Li Zhensheng. Difference of Hydrocarbon Accumulation Between Hanging and Foot Wall of Half Graben Boundary Fault and Exploration Practice: A Case Study of X Sag in Huizhou Depression, Pearl River Mouth Basin, Northern South China Sea [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 346-355.
[2] Liu Jingshou, Dai Junsheng, Xu Ke, Zhang Yi, Ding Wenlong. Method for the Characterization of the Evolution of Tectonic Fracture Attitudes and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 84-94.
[3] Yang Haiyan, Yue Jianhua, Xu Zhengyu, Zhang Hua, Jiang Zhihai. Transient Electromagnetic Method Modeling in Ground-Borehole Model with Overburden Influence [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1527-1537.
[4] Liu Zhaojun, Sun Pingchang, Liu Rong, Meng Qingtao, Hu Fei. Research on Oil Shale Features and Metallogenic Differences in Dunhua-Mishan Fault Zone Basins [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1090-1099.
[5] Dong Dawei, Li Li, Wang Xiaolei, Zhao Li. Structural Evolution and Dislocation Mechanism of Western Margin Chepaizi Uplift of Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1132-1141.
[6] Wang Weifeng, Zhou Weiwei, Zhou Jie, Li Shaolong. Formation Mechanism and Distribution of Buried Fault Zones in the Jinhu Sag [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1395-1405.
[7] Meng Xiangang, Bo Wanju, Liu Zhiguang, LiuYong, Chang Liu, Li Chaozhu, Wang Ziping. Activity in the Middle East of Bayan Har Block with Lushan MS 7.0 Earthquake [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1705-1711.
[8] Zhou Hongfu, Wang Chunshan, Nie Dexin. Influence of Deformation Modulus of Fault Rock Masses on Dam Foundation Stability [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1254-1259.
[9] Qie Ying,Fu Xiaofei,Meng Lingdong,Xu Peng. Fault Zone Structure and Hydrocarbon Accumulation in Carbonates [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 749-761.
[10] Yang Haiyan, Deng Juzhi, Tang Hongzhi, Lin Yun. Translation Algorithm of Data Interpretation Technique in Full-Space Transient Electromagnetic Method [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 1012-1017.
[11] Yang Weimin, Huang Xiao, Zhang Chunshan, Si Haibao. Deformation Behavior of Landslides and Their Formation Mechanism Along Pingding-Huama Active Fault in Bailongjiang River Region [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 574-583.
[12] Liu Zhihong,Mei Mei,Gao Junyi,Wu Xiangmei,Huang Chaoyi,Lin Dongcheng,Sun Linan. Structural Features, Formation Mechanism of Hulin Basin and Deformation Time of Northeastern Segment of Dunhua-Mishan Fault Zone in Northeast China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 480-489.
[13] Fu Xiaofei,Xiao Jianhua,Meng Lingdong. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 25-37.
[14] Huang Chao, Yu Zhaohua, Zhang Guilin, Fu Liangtong, Yuan Zhiyun, Fan Xingyan. Cenozoic Dextral Strike-Slip Displacement of the Middle Tan-Lu Fault Zone [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 820-832.
[15] SHI Jian-ji, ZHANG Shou-zhi. Characters of the Mesozoic Tectonic Activity and Geotectonic Setting of the Changle-Nan’ao Fault Zone [J]. J4, 2010, 40(6): 1333-1343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!