Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (5): 1289-1303.doi: 10.13278/j.cnki.jjuese.20190287
Previous Articles Next Articles
Li Hongliang1, Li Guangming2,3, Ding Jun2,3, Zhang Zhi2, Qing Chengshi2, Fu Jiangang2, Ling Chen2,3, Liu Yuqi2,3
CLC Number:
[1] 聂凤军,胡朋,江思宏,等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 79(3):373-385. Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 79(3):373-385. [2] 吴建阳,李光明,周清,等. 藏南扎西康整装勘查区成矿体系初探[J]. 中国地质, 2015, 42(6):1674-1683. Wu Jianyang, Li Guangming, Zhou Qing, et al. A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet[J]. Geology in China, 2015, 42(6):1674-1683. [3] 谢玉玲,杨科君,李应栩,等. 藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源[J]. 地球科学, 2019, 44(6):1998-2016. Xie Yuling, Yang Kejun, Li Yingxu, et al. Mazhala Gold-Antimony Deposit in Southern Tibet:The Characteristics of Ore-Forming Fluids and the Origin of Gold and Antimony[J]. Earth Science, 2019, 44(6):1998-2016. [4] 李洪梁,李光明,李应栩,等. 藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征[J]. 矿物学报, 2017, 37(6):684-696. Li Hongliang, Li Guangming, Li Yingxu, et al. A Study on Ore Geological Characteristics and Fluid Inclusions of Jienagepu Gold Deposit in Zhaxikang Ore Concentration District, Southern Tibet, China[J]. Acta Mineralogica Sinica, 2017, 37(6):684-696. [5] 李光明,张林奎,焦彦杰,等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008. Li Guangming, Zhang Linkui, Jiao Yanjie, et al. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008. [6] 杨竹森,侯增谦,高伟,等. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 2006, 80(9):1377-1391. Yang Zhusen, Hou Zengqian, Gao Wei, et al. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System[J]. Acta Geologica Sinica, 2006, 80(9):1377-1391. [7] 李金高,王全海,陈健坤,等. 西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究[J]. 成都理工学院学报, 2002, 29(5):533-538. Li Jingao, Wang Quanhai, Chen Jiankun, et al. Studyof Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet[J]. Journal of Chengdu University of Technology, 2002, 29(5):533-538. [8] 孟祥金,杨竹森,戚学祥,等. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应[J]. 岩石学报, 2008, 24(7):1649-1655. Meng Xiangjin, Yang Zhusen, Qi Xuexiang, et al. Silicon-Oxygen-Hydrogen Isotopic Compositions of Zhaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Responses to the Ore-Controlling Structure[J]. Acta Petrologica Sinica, 2008, 24(7):1649-1655. [9] 张建芳,郑有业,张刚阳,等. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J]. 地球科学:中国地质大学学报, 2010, 35(6):1000-1010. Zhang Jianfang, Zheng Youye, Zhang Gangyang, et al. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(6):1000-1010. [10] 王晓曼,李及秋,张学良,等. 西藏扎西康铅锌锑多金属矿地质特征及矿床成因探讨[J]. 矿产与地质, 2011, 25(4):273-279. Wang Xiaoman, Li Jiqiu, Zhang Xueliang, et al. Geological Features and Genesis of the Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Tibet[J]. Mineral Resources and Geology, 2011, 25(4):273-279. [11] 郑有业,刘敏院,孙祥,等. 西藏扎西康锑多金属矿床类型、发现过程及意义[J]. 地球科学:中国地质大学学报, 2012, 37(5):1003-1014. Zheng Youye, Liu Minyuan, Sun Xiang, et al. Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet[J].Earth Science:Journal of China University of Geosciences, 2012, 37(5):1003-1014. [12] 王艺云,唐菊兴,郑文宝,等. 西藏隆子县扎西康锌多金属矿床矿石组构研究及成因探讨[J]. 地球学报, 2012, 33(4):681-692. Wang Yiyun, Tang Juxing, Zheng Wenbao, et al. A Tentative Discussion on Ore Fabric and Genesis of the Zhaxikang Zn-Polymetallic Deposit, Lhunze County, Tibet[J]. Acta Geoscientica Sinica, 2012, 33(4):681-692. [13] 梁维,杨竹森,郑远川. 藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J]. 地质学报, 2015, 89(3):560-568. Liang Wei, Yang Zhusen, Zheng Yuanchuan. The Zhaxikang Pb-Zn Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance[J]. Acta Geologica Sinica, 2015, 89(3):560-568. [14] Wang D, Sun X, Zheng Y, et al. Two Pulses of Mineralization and Genesis of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Constraints from Fe-Zn Isotopes[J]. Ore Geology Reviews, 2017, 84:347-363. [15] Liang J, Sun W, Zhu S, et al. Mineralogical Study of Sediment-Hosted Gold Deposits in the Yangshan Ore Field, Western Qinling Orogen, Central China[J]. Journal of Asian Earth Sciences, 2014, 85:40-52. [16] 周伶俐,曾庆栋,孙国涛,等. LA-ICP-MS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 2019, 35(7):1964-1978. Zhou Lingli, Zeng Qingdong, Sun Guotao, et al. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Elemental Mapping and Its Applications in Ore Geology[J]. Acta Petrologica Sinica, 2019, 35(7):1964-1978. [17] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280. [18] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-28. Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of Tectonic Units in China[J]. Geology in China, 2009, 36(1):1-28. [19] Zhu D C, Chung S L, Mo X X, et al. The 132 Ma Comei-BunburyLarge Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia[J]. Geology, 2009, 37(7):583-586. [20] 张林奎,张志,李光明,等. 特提斯喜马拉雅错那洞穹窿的岩石组合、构造特征与成因[J]. 地球科学, 2018, 43(8):2664-2683. Zhang Linkui, Zhang Zhi, Li Guangming, et al. Rock Assemblage,Structural Characteristics and Genesis Mechanism of the Cuonadong Dome,Tethys Himalaya[J]. Earth Science, 2018, 43(8):2664-2683. [21] 高利娥,高家昊,赵令浩,等. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用[J]. 岩石学报, 2017, 33(8):2395-2411. Gao Li'e, Gao Jiahao, Zhao Linghao, et al. The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization[J]. Acta Petrologica Sinica, 2017, 33(8):2395-2411. [22] 林彬,唐菊兴,郑文宝,等. 西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J]. 岩石矿物学杂志, 2016, 35(3):391-406. Lin Bin, Tang Juxing, Zheng Wenbao, et al. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet[J]. Acta Petrologica et Mineralogica, 2016, 35(3):391-406. [23] 李洪梁,李光明,张志,等. 藏南扎西康铅锌多金属矿床控矿因素及找矿预测[J]. 金属矿山, 2016, 45(10):103-108. Li Hongliang, Li Guangming, Zhang Zhi, et al. Ore-Controlling Factors and Prospecting Prediction of Zhaxikang Pb-Zn Polymetallic Deposit, Southern Tibet[J]. Metal Mine, 2016, 45(10):103-108. [24] Chen L, Chen K, Bao Z, et al. Preparation of Standards for in Situ Sulfur Isotope Measurement in Sulfide Using Femtosecond Laser Ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32:107-116. [25] Bao Z, Lu C, Zong C, et al. Development of Pressed Sulfide Powder Tablets for in Situ Sulfur and Lead Isotope Measurement Using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421:255-262. [26] Yuan H, Xu L, Lu C, et al. Simultaneous Measurement of Sulfur and Lead Isotopes in Sulfides Using Nanosecond Laser Ablation Coupled with Two Multi-Collector Inductively Coupled Plasma Mass Spectrometers[J]. Journal of Asian Earth Sciences, 2017, 154:386-396. [27] 李关清. 西藏扎西康锑硫盐多金属矿床成矿机制与区域成矿潜力评价[D]. 北京:中国地质大学(北京), 2015. Li Guanqing. Metallogenetic Mechanism and Ore-Forming Potential Evaluation of the Zhaxikang Antimony (Sulfur Salts) Polymetallic Deposits in Tibet[D]. Beijing:China University of Geosciences (Beijing), 2015. [28] 易继宁. 藏南扎西康式铅锌成矿作用与多元地学信息找矿预测研究[D]. 北京:中国地质大学(北京), 2017. Yi Jining. The Study of Mineralization and Multi-Information Prediction of Zhaxikang-Style Zn-Pb Deposit, Southern Tibet[D]. Beijing:China University of Geosciences (Beijing), 2017. [29] 王达. 藏南扎西康锑铅锌银矿床同位素地球化学研究[D]. 北京:中国地质大学(北京), 2018. Wang Da. The Isotope Geochemistry Research of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet[D]. Beijing:China University of Geosciences (Beijing), 2018. [30] Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J]. Economic Geology, 1972, 67:551-578. [31] Ohmoto H, Rye R D. Isotopes of Sulfur and Carbon[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York:Wiley,1979:509-567. [32] Seal R R. Sulfur Isotope Geochemistry of Sulfide Minerals[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1):633-677. [33] Nickel E H. BondStrength and Sulfur Isotopic Fractionation in Coexisting Sulfides (Discussion)[J]. Economic Geology, 1969, 64(8):934-935. [34] Pinckney D M, Rafter T A. Fractionation of Sulfur Isotopes During Ore Deposition in the Upper Mississippi Valley Zinc-Lead District[J]. Economic Geology, 1972, 67(3):315-328. [35] 朱黎宽,顾雪祥,李关清,等. 藏南扎西康铅锌锑多金属矿床流体包裹体研究及地质意义[J]. 现代地质, 2012, 26(3):453-463. Zhu Likuan, Gu Xuexiang, Li Guanqing, et al. Fluid Inclusions in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, South Tibet, and Its Geological Significance[J]. Geoscience, 2012, 26(3):453-463. [36] 李应栩,李光明,董随亮,等. 西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J]. 矿物岩石地球化学通报, 2015, 34(3):571-582. Li Yingxu, Li Guangming, Dong Suiliang, et al. Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit, Tibet, China[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(3):571-582. [37] 梁维,郑远川,杨竹森,等. 藏南扎西康铅锌银锑多金属矿多期多阶段成矿特征及其指示意义[J]. 岩石矿物学杂志, 2014, 33(1):64-78. Liang Wei, Zheng Yuanchuan, Yang Zhusen, et al. Multiphase and Polystage Metallogenic Process of the Zhaxikang Large-Size Pb-Zn-Ag-Sb Polymetallic Deposit in Southern Tibet and Its Implications[J]. Acta Petrologica et Mineralogica, 2014, 33(1):64-78. [38] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011, 27(5):1253-1261. Lu Huanzhang. FluidsImmiscibility and Fluid Inclusions[J]. Acta Petrologica Sinica, 2011, 27(5):1253-1261. [39] Ohmoto H. StableIsotope Geochemistry of Ore Deposits[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1):491-559. [40] Xie Y, Wang B, Li Y, et al. Characteristics of Pegmatite-Related Fluids and Significance to Ore-Forming Processes in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China[J]. Acta Geologica Sinica (English Edition), 2015, 89(3):811-821. [41] Xie Y, Li L, Wang B, et al. Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link[J]. Ore Geology Reviews, 2017, 80:891-909. [42] 张政,唐菊兴,林彬,等. 藏南扎西康矿床闪锌矿微量元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2016, 35(6):1203-1216. Zhang Zheng, Tang Juxing, Lin Bin, et al. Geochemical Characteristics of Trace Elements of Sphalerite in the Zhaxikang Deposit, Southern Tibet, and Their Geological Significances[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2016, 35(6):1203-1216. [43] Duan J, Tang J, Lin B. Zinc and Lead Isotope Signatures of the Zhaxikang Pb-Zn Deposit, South Tibet:Implications for the Source of the Ore-Forming Metals[J]. Ore Geology Reviews, 2016, 78:58-68. [44] 郑文宝,丁帅,冷秋锋,等. 西藏扎西康矿区典型剖面岩石地球化学特征及地质意义[J]. 地质与勘探, 2017, 53(1):97-108. Zheng Wenbao, Ding Shuai, Leng Qiufeng, et al. Petrogeochemical Characteristics ofa Typical Cross-Section in the Zhaxikang Ore District of Tibet and Their Geological Significance[J]. Geology and Prospecting, 2017, 53(1):97-108. [45] Zhou Q, Li W, Qing C, et al. Origin and Tectonic Implications of the Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Evidence from Structures, Re-Os-Pb-S Isotopes, and Fluid Inclusions[J]. Mineralium Deposita, 2017(Sup.2):1-16. [46] 代鸿章,程文斌,李关清,等. 藏南扎西康Pb-Zn-Sb-Ag多金属矿床典型矿物标型研究[J]. 矿物学报, 2014, 34(1):72-82. Dai Hongzhang, Cheng Wenbin, Li Guanqing, et al. A Study on the Typomorphic Characteristics of Typical Mineral from Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2014, 34(1):72-82. [47] Kampschulte, Strauss. The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates[J]. Chemical Geology, 2004, 204(3/4):255-286. [48] 黄春梅,李光明,张志,等. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(6):182-195. Huang Chunmei, Li Guangming, Zhang Zhi, et al.Petrogenesis of the Cuonadong Leucogranite in South Tibet:Constraints from Bulk-Rock Geochemistry and Zircon U-Pb Dating[J]. Earth Science Frontiers, 2018, 25(6):182-195. [49] 梁维,张林奎,夏祥标,等. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J]. 地球科学, 2018, 43(8):2742-2754. Liang Wei, Zhang Linkui, Xia Xiangbiao, et al. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China[J]. Earth Science, 2018, 43(8):2742-2754. [50] 焦彦杰,黄旭日,李光明,等. 藏南扎西康矿集区深部结构与成矿:来自地球物理的证据[J]. 地球科学, 2019, 44(6):2117-2128. Jiao Yanjie, Huang Xuri, Li Guangming, et al. Deep Structure and Mineralization of Zhaxikang Ore-Concentration Area, South Tibet:Evidence from Geophysics[J]. Earth Science, 2019, 44(6):2117-2128. [51] Molnar P, Tapponnier P. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189:419-426. [52] Leech M L, Singh S, Jain A K, et al. The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya[J]. Earth & Planetary Science Letters, 2005, 234(1):83-97. [53] Donaldson D G, Webb A A G, Menold C A, et al. Petrochronology of Himalayan Ultrahigh-Pressure Eclogite[J]. Geology, 2013, 41(8):835-838. [54] 朱弟成,王青,赵志丹. 岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例[J]. 中国科学:地球科学, 2017, 47(6):657-673. Zhu Dicheng, Wang Qing, Zhao Zhidan, et al. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record:Method and Examples[J]. Science in China:Earth Science, 2017, 47(6):657-673. [55] 侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:I. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358. Hou Zengqian, Yang Zhusen, Xu Wenyi, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting[J]. Mineral Deposits, 2006, 25(4):337-358. [56] 侯增谦,潘桂棠,王安建,等. 青藏高原碰撞造山带:Ⅱ. 晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5):521-543. Hou Zengqian, Pan Guitang, Wang Anjian, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineralization in Late-Collisional Transformation Setting[J]. Mineral Deposits, 2006, 25(5):521-543. [57] 侯增谦,曲晓明,杨竹森,等. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651. Hou Zengqian, Qu Xiaoming, Yang Zhusen, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting[J]. Mineral Deposits, 2006, 25(6):629-651. |
[1] | Zhang Zijun, Ao Cong, Yan Chengmin, Yang Yu, Lang Weixiong, Hong Xinke, Du Lei, Li Xinren. Geological Characteristics and Genetic Analysis of Xiengkhor Magnesite in Houaphanh Province, Laos [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 85-96. |
[2] | LIAN Yong-lao, CAO Xin-zhi, YAN Chang-hai, DU Xin. Exhalative Sedimentary Genesis of Lawu Copper-Lead-Zinc Deposit in Dangxiong County of Tibet [J]. J4, 2010, 40(5): 1041-1046. |
[3] | ZHANG Zhi-bin, LI Jian-hua, HUANG Chao-yi, LIU Hong, DIAO Yan-hui. Study on Genesis and Ore Prospecting of Dongshengmiao Deposit in Inner Mongolia [J]. J4, 2010, 40(4): 791-800. |
[4] | HE Jun-guo, ZHOU Yong-zhang, YANG Zhi-jun, LI Hong-zhong, WANG Xiao-yue. Study on Geochemical Characteristics and Depositional Environment of Pengcuolin Chert, Southern Tibet [J]. J4, 2009, 39(6): 1055-1065. |
|