Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (6): 1628-1638.doi: 10.13278/j.cnki.jjuese.20190082
Li Yihe1, Wang Dianju2,3, Yu Fahao4, Liu Zhiqiang5
CLC Number:
[1] Marton L G, Tari G C,Lehmann C T. Evolution of the Angolan Passive Margin,West Africa, with Emphasis on Postsalt Structural Styles[C]//Mohriak W U, Talwani M. Atlantic Rifts and Continental Margins. Washington DC:American Geophysical Union, 2000:129-149. [2] Peel F J. The Engines of Gravity-Driven Movement on Passive Margins:Quantifying the Relative Contribution of Spreading vs. Gravity Sliding Mechanisms[J]. Tectonophysics, 2014, 633:126-142. [3] Rowan M G,Lindsø S. Salt Tectonics of the Norwegian Barents Sea and Northeast Greenland Shelf[J]. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, 2017, 12:265-286. [4] Roberts A M, Kusznir N J, Yielding G, et al. 2D Flexural Back Stripping of Extensional Basins:The Need for a Sideways Glance[J]. Petroleum Geoscience, 1998, 4:327-338. [5] Macaulay E A. A New Approach to Backstripping and Sequential Restoration in Subsalt Sediments[J]. AAPG Bulletin, 2017, 101(9):1385-1394. [6] Jackson M,Hudec M. Salt Tectonics:Principles and Practice[M]. Cambridge:Cambridge University Press, 2017:304-335. [7] Adam J, Ge Z,Sanchez M. Post-Rift Salt Tectonic Evolution and Key Control Factors of the Jequitinhonha Deepwater Fold Belt, Central Brazil Passive Margin:Insights from Scaled Physical Experiments[J]. Marine and Petroleum Geology, 2012, 37(1):70-100. [8] Allen J,Beaumont C. Impact of Inconsistent Density Scaling on Physical Analogue Models of Continental Margin Scale Salt Tectonics[J]. Journal of Geophysical Research, 2012, 117:B8103. [9] Schultz-Ela D D. Origin of Drag Folds Bordering Salt Diapirs[J]. AAPG Bulletin, 2003, 87(5):757-780. [10] Goteti R, Beaumont C, Steven J, et al. Factors Controlling Early Stage Salt Tectonics at Rifted Continental Margins and Their Thermal Consequences[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):3190-3220. [11] 王殿举, 李江海, 程鹏, 等. 构造倾斜角度对盐构造形成的控制模式:以下刚果盆地为例[J]. 北京大学学报(自然科学版), 2019, 55(2):277-288. Wang Dianju, Li Jianghai, Cheng Peng, et al. Salt Structure Formation Modeling Controlled by Structure Inclination Angle:Take the Lower Congo Basin as an Example[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2):277-288. [12] General Bathymetric Chart of the Oceans[EB/OL]. (2019-01-13). http://www.gebco.net/. [13] Anka Z, Michel S, Primio R D. Evidence of a Large Upper-Cretaceous Depocentre Across the Continent-Ocean Boundary of the Congo-Angola Basin:Implications for Palaeo-Drainage and Potential Ultra-Deep Source Rocks[J]. Marine and Petroleum Geology, 2010, 27(3):601-611. [14] 方堃. 安哥拉下刚果盆地石油地质特征概述[J]. 内蒙古石油化工, 2018, 44(7):106-109. Fang Kun. Petroleum Geology in Angola Lower Congo Basin[J]. Inner Mongolia Petrochemical Industry, 2018, 44(7):106-109. [15] Nombomakaya N L, Han C H. Pre-Salt Petroleum System of Vandji-Conkouati Structure (Lower Congo Basin), Republic of Congo[J]. Research Journal of Applied Sciences, 2012, 3:101-107. [16] 秦雁群, 张光亚, 梁英波, 等. 南大西洋深水油气分布特征、聚集规律与勘探方向[J]. 天然气地球科学, 2016, 27(2):229-240. Qin Yanqun, Zhang Guangya, Liang Yingbo, et al. Distribution Characteristics, Accumulation Rules and Exploration Directions of Deep Water Hydrocarbon in South Atlantic[J]. Natural Gas Geoscience, 2016, 27(2):229-240. [17] 张光亚, 温志新, 梁英波, 等. 全球被动陆缘盆地构造沉积与油气成藏:以南大西洋周缘盆地为例[J]. 地学前缘, 2014, 21(3):18-25. Zhang Guangya, Wen Zhixin, Liang Yingbo, et al. Tectonic-sedimentary Features and Petroleum Accumulation in the Passive Continental Margin Basins of South Atlantic Peripheries[J]. Earth Science Frontiers, 2014, 21(3):18-25. [18] Mohriak W U, Leroy S. Architecture of Rifted Continental Margins and Insights from the South Atlantic, North Atlantic and Red Sea-Gulf of Aden Conjugate Margins[J]. Geological Society London Special Publications, 2013, 369(1):497-535. [19] 陶崇智, 殷进垠, 陆红梅, 等. 南大西洋被动陆缘盆地盐岩对油气成藏的影响[J]. 石油实验地质, 2015, 37(5):614-618. Tao Chongzhi, Yin Jinyin, Lu Hongmei, et al. Impact of Salt on Hydrocarbon Accumulation in South Atlantic Passive Margin Basins[J]. Petroleum Geology and Experiment, 2015, 37(5):614-618. [20] 逄林安. 西非下刚果盆地大型湖相浊积岩特征及勘探意义[J]. 海洋地质前沿, 2018, 34(4):41-48. Pang Lin'an. Characteristics and Exploration Potential of Lacustrine Turbiditic Sandstone in Lower Congo Basin of West Africa[J]. Marine Geology Frontiers, 2018, 34(4):41-48. [21] Ho S, Cartwright J A, Imbert P. Vertical Evolution of Fluid Venting Structures in Relation to Aas Flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola[J]. Marine Geology, 2012, 332/323/334:40-55. [22] Davison I. Geology and Tectonics of the South Atlantic Brazilian Salt Basins[J]. Geological Society London Special Publications, 2007, 272(1):345-359. [23] 黄兴, 杨香华, 朱红涛, 等. 下刚果盆地Madingo组海相烃源岩岩相特征和沉积模式[J]. 石油学报, 2017, 38(10):74-88. Huang Xing, Yang Xianghua, Zhu Hongtao,et al. Lithofacies Characteristics and Sedimentary Pattern of Madingo Formation Marine Hydrocarbon Source Rocks in Lower Congo Basin[J]. Acta Petrolei Sinica, 2017, 38(10):74-88. [24] Liu L, Tang D, Xu H, et al. Reservoir Prediction of Deep-Water Turbidite Sandstones with Seismic Lithofacies Control:A Case Study in the C Block of Lower Congo Basin[J]. Marine & Petroleum Geology, 2016, 71:1-11. [25] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt Tectonic Controls on Deep-Water Turbidite Depositional Systems:Miocene, Southwestern Lower Congo Basin, Offshore Angola[J]. Basin Research, 2014, 26(4):597-620. [26] Hudec M R, Jackson M P A. Terra Infirma:Understanding Salt Tectonics[J]. Earth-Science Reviews, 2007, 82(1/2):1-28. [27] Anderson J E, Cartwright J, Drysdall S J, et al. Controls on Turbidite Sand Deposition During Gravity-Driven Extension of a Passive Margin:Examples From Miocene Sediments in Block 4, Angola[J]. Marine & Petroleum Geology, 2000, 17(10):1165-1203. [28] Valle P J, Gjelberg J G,Helland-Hansen W. Tectonostratigraphic Development in the Eastern Lower Congo Basin, Offshore Angola, West Africa[J]. Marine & Petroleum Geology, 2001, 18:909-927. [29] Teisserenc P,Villemin J. Sedimentary Basin of Gabon-Geology and Oil Systems[J]. American Association of Petroleum Geologists, 1989, 84:177-199. [30] Lavier L, Steckler M, Brigaud F. An Improved Method for Reconstructing the Stratigraphy and Bathymetry of Continental Margins:Application to the Cenozoic Tectonic and Sedimentary History of the Congo Margin[J]. AAPG Bulletin, 2000, 84(7):923-939. [31] Anka Z,Séranne M. Reconnaissance Study of the Ancient Zaire (Congo) Deep-Sea Fan(ZaiAngo Project)[J]. Marine Geology, 2004, 209(1):223-244. [32] Anka Z, Séranne M, Lopez M, et al. The Long-Term Evolution of the Congo Deep-Sea Fan:A Basin-Wide View of the Interaction Between a Giant Submarine Fan and a Mature Passive Margin (Zaiango Project)[J]. Tectonophysics, 2009, 470(1):42-56. [33] Morgan J K,Mcgovern P J. Discrete Element Simulations of Gravitational Volcanic Deformation:1:Deformation Structures and Geometries[J]. Journal of Geophysical Research Atmospheres, 2005, 110(B5):2701-2711. [34] Maxwell S A. Deformation Styles of Allochthonous Salt Sheets During Differential Loading Conditions:Insights from Discrete Element Models[D]. Houston:Rice University, 2009:1-17. [35] Dean S L,Morgan J K. Influence of Mobile Shale on Thrust Faults:Insights from Discrete Element Simulations[J]. AAPG Bulletin, 2015, 99(3):403-432. [36] Unternehr P, Péronpinvidic G, Manatschal G, et al. Hyper-Extended Crust in the South Atlantic:In Search of a Model[J]. Petroleum Geoscience, 2010, 16(3):207-215. [37] Nikolinakou M A, Luo G, Hudec M R, et al. Geomechanical Modeling of Stresses Adjacent to Salt Bodies:Part 2:Poroelastoplasticity and Coupled Overpressures[J]. AAPG Bulletin, 2012, 96(1):65-85. [38] Ings S, Beaumont C,Gemmer L. Numerical Modeling of Salt Tectonics on Passive Continental Margins:Preliminary Assessment of the Effects of Sediment Loading, Buoyancy, Margin Tilt, and Isostasy[J]. Salt Sediment Interactions and Hydrocarbon Prospectivity:Concepts, Applications, and Case Studies for the 21st Century, 2004, 24:36-68. [39] Morgan J K. Particle Dynamics Simulations of Rate and State-Dependent Frictional Sliding of Granular Fault Gouge[J]. Pure & Applied Geophysics, 2004, 161(9/10):1877-1891. [40] Carter N L, Horseman S T, Russell J E, et al. Rheology of Rocksalt[J]. Journal of Structural Geology, 1993, 15(9/10):1257-1271. [41] Channell J E T, Stoner J S, Hodell D A, et al. Geomagnetic Paleointensity for the Last 100 kyr from the Sub-Antarctic South Atlantic:A Tool for Inter-Hemispheric Correlation[J]. Earth & Planetary Science Letters, 2000, 175(1/2):145-160. [42] 汤济广, 梅廉夫, 沈传波, 等. 平衡剖面技术在盆地构造分析中的应用进展及存在的问题[J]. 油气地质与采收率, 2006, 13(6):19-22. Tang Jiguang, Mei Lianfu, Shen Chuanbo, et al. Advances and Problems in the Application of Balanced Cross-Section Technique in Structure Studies of Basins[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(6):19-22. [43] 毛小平, 吴冲龙, 袁艳斌. 地质构造的物理平衡剖面法[J]. 地球科学:中国地质大学学报, 1998, 23(2):167-170. Mao Xiaoping, Wu Chonglong, Yuan Yanbin, et al. Physical Balanced Cross Sections for Geological Structure[J]. Earth Science:Journal of China University of Geosciences, 1998, 23(2):167-170. [44] Quirk D G, Schodt N, Lassen B, et al. Salt Tectonics on Passive Margins:Examples from Santos, Campos and Kwanza Basins[J]. Geological Society London Special Publications, 2012, 363(1):207-244. [45] Duval B, Cramez C,Jackson M P A. Raft Tectonics in the Kwanza Basin, Angola[J]. Marine & Petroleum Geology, 1992, 9(4):389-404. [46] Brun J P, Fort X. Salt Tectonics at Passive Margins:Geology Versus Models[J]. Marine & Petroleum Geology, 2011, 28(6):1123-1145. [47] 于水, 胡望水, 李涛, 等. 下刚果盆地重力滑脱伸展构造生长发育特征[J]. 石油天然气学报, 2012, 34(3):28-33. Yu Shui, Hu Wangshui, Li Tao, et al. Features of Gravitational Decollement and Extension Structure Development in Lower Congo Basin[J]. Journal of Oil and Gas Technology, 2012, 34(3):28-33. [48] 陈亮, 赵千慧, 王英民, 等. 盐构造与深水水道的交互作用:以下刚果盆地为例[J]. 沉积学报, 2017, 35(6):1197-1204. Chen Liang, Zhao Qianhui, Wang Yingmin, et al. Interactions Between Submarine Channels and Salt Structures:Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6):1197-1204. [49] Anka Z, Ondrak R, Kowitz A, et al. Identification and Numerical Modelling of Hydrocarbon Leakage in the Lower Congo Basin:Implications on the Genesis of Km-Wide Seafloor Mounded Structures[J]. Tectonophysics, 2013, 604:153-171. [50] 马中振, 谢寅符, 张志伟,等. 南美东缘盐岩发育特征及其与油气聚集的关系[J]. 吉林大学学报(地球科学版), 2013, 43(2):360-370. Ma Zhongzhen, Xie Yinfu, Zhang Zhiwei, et al. Salt Development Characteristics and Its Controlling on Hydrocarbon Accumulation in Eastern Margin of South America[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2):360-370. |
[1] | Duan Yunxing, Yang Hao. Analysis of Influencing Factors on Heat Extraction Performance of Enhanced Geothermal System [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1161-1172. |
[2] | Sheng Chong, Xu Hehua, Zhang Yunfan, Zhang Wentao, Ren Ziqiang. Hydrological Properties of Calcareous Sands and Its Influence on Formation of Underground Freshwater Lenson Islands [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1127-1138. |
[3] | Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1723-1731. |
[4] | Sun chao, Xu Chengjie. Influence of Excavation of a Deep Excavation on the Surrounding Environment [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1698-1705. |
[5] | Wang Changming, Li Tong, Tian Shuwen, Li Shuo. Establishment and Application of Prediction Model for Debris Flow Accumulation Area Based on LAHARZ [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1672-1679. |
[6] | Yang Xinle, Bi Xuqing, Zhang Yongli, Li Weikang, Dai Wenzhi, Wang Yapeng, Su Chang. Numerical Simulation of Migration and Output Law of Coal-Bed Methane in Heat Injection Combined Well Group Mining [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1100-1108. |
[7] | Chang Xiaojun, Ge Weiya, Yu Yang, Zhao Yu, Ye Longzhen, Zhang Taili, Wei Zhenlei. Mechanism and Mitigation Measures of Qishan Landslide of Yongtai in Fujian Province [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1063-1072. |
[8] | Yin Songyu, Zhao Dajun. Experiment on Effect of Different Stress Conditions on Rock Strength Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 755-761. |
[9] | Yang Bing, Xu Tianfu, Li Fengyu, Tian Hailong, Yang Leilei. Numerical Simulation on Impact of Water-Rock Interaction on Reservoir Permeability: A Case Study of Upper Paleozoic Sandstone Reservoirs in Northeastern Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 526-538. |
[10] | Chen Yongzhen, Wu Bin, Yang Fan, Wu Gang, Weng Yang. Coupled Numerical Simulation of Seepage and Deformation of Interceptingand Drainaging Water with Compressed Air [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 485-492. |
[11] | Chen Yongzhen, Wu Gang, Sun Hongyue, Shang Yuequan. Numerical Simulation of the Efficiency of Intercepting Water with Compressed Air in the Treatment of Landslide [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1427-1433. |
[12] | Li Ang, Ju Linbo, Zhang Liyan. Relationship Between Hydrocarbon Accumulation and Paleo-Mesozoic Tectonic Evolution Characteristics of Gucheng Lower Uplift in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 545-555. |
[13] | Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716. |
[14] | Tan Jiahua, Lei Hongwu. Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1229-1235. |
[15] | Yin Songyu, Zhao Dajun, Zhou Yu, Zhao Bo. Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 526-533. |
|