Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (6): 1628-1638.doi: 10.13278/j.cnki.jjuese.20190082

Previous Articles    

Formation and Evolution of Cretaceous Salt Structures in Lower Congo Basin

Li Yihe1, Wang Dianju2,3, Yu Fahao4, Liu Zhiqiang5   

  1. 1. College of Architecture and Surveying Engineering, Shanxi Datong University, Datong 037003, Shanxi, China;
    2. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
    3. Institute of Oil and Gas, Peking University, Beijing 100871, China;
    4. Bohai Oilfield Research Institute of CNOOC Ltd., Tianjin 300452, China;
    5. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2019-04-12 Published:2020-12-11
  • Supported by:
    Supported by Ministry of Science and Technology Project of Sinopec (P18090-2)

Abstract: The Lower Congo basin contains a large amount of oil and gas resources, and the salt structure controls the hydrocarbon accumulation and distribution. The flow of salt rocks is irregular, therefore, it is difficult to analyze the formation and evolution of the salt structures. The former studies of the basin tectonic evolution by means of balanced sections method cannot accurately describe the formation and evolution of the salt structures in different ages. The flow of salt rock and the deformation of salt structures in the Lower Congo basin is not clear. A discrete element numerical simulation experiment was carried out, and the method of phased loading of sedimentary strata was adopted. The results are consistent with the geological conditions of the Lower Congo basin and the existing geological understanding of the basin. The results show that the formation process of the salt structure in the Lower Congo basin is mainly divided into three stages:The initial flow stage, the formation stage, and the stable stage. The main period of formation of the salt diapir structure is the Paleocene-Miocene. In the Paleocene-Oligocene period, the salt diapir structure began to form. During the Miocene period, the salt diapir structure was obvious in quantity and scale, and the Miocene was the most intensive period of salt tectonic activity. Compared with the previous research results, the main evolution stage of the salt structure is clarified based on the forward modeling of tectonic evolution process of the Lower Congo basin in this study.

Key words: Lower Congo basin, numerical simulation, salt structure, tectonic evolution

CLC Number: 

  • P548
[1] Marton L G, Tari G C,Lehmann C T. Evolution of the Angolan Passive Margin,West Africa, with Emphasis on Postsalt Structural Styles[C]//Mohriak W U, Talwani M. Atlantic Rifts and Continental Margins. Washington DC:American Geophysical Union, 2000:129-149.
[2] Peel F J. The Engines of Gravity-Driven Movement on Passive Margins:Quantifying the Relative Contribution of Spreading vs. Gravity Sliding Mechanisms[J]. Tectonophysics, 2014, 633:126-142.
[3] Rowan M G,Lindsø S. Salt Tectonics of the Norwegian Barents Sea and Northeast Greenland Shelf[J]. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, 2017, 12:265-286.
[4] Roberts A M, Kusznir N J, Yielding G, et al. 2D Flexural Back Stripping of Extensional Basins:The Need for a Sideways Glance[J]. Petroleum Geoscience, 1998, 4:327-338.
[5] Macaulay E A. A New Approach to Backstripping and Sequential Restoration in Subsalt Sediments[J]. AAPG Bulletin, 2017, 101(9):1385-1394.
[6] Jackson M,Hudec M. Salt Tectonics:Principles and Practice[M]. Cambridge:Cambridge University Press, 2017:304-335.
[7] Adam J, Ge Z,Sanchez M. Post-Rift Salt Tectonic Evolution and Key Control Factors of the Jequitinhonha Deepwater Fold Belt, Central Brazil Passive Margin:Insights from Scaled Physical Experiments[J]. Marine and Petroleum Geology, 2012, 37(1):70-100.
[8] Allen J,Beaumont C. Impact of Inconsistent Density Scaling on Physical Analogue Models of Continental Margin Scale Salt Tectonics[J]. Journal of Geophysical Research, 2012, 117:B8103.
[9] Schultz-Ela D D. Origin of Drag Folds Bordering Salt Diapirs[J]. AAPG Bulletin, 2003, 87(5):757-780.
[10] Goteti R, Beaumont C, Steven J, et al. Factors Controlling Early Stage Salt Tectonics at Rifted Continental Margins and Their Thermal Consequences[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):3190-3220.
[11] 王殿举, 李江海, 程鹏, 等. 构造倾斜角度对盐构造形成的控制模式:以下刚果盆地为例[J]. 北京大学学报(自然科学版), 2019, 55(2):277-288. Wang Dianju, Li Jianghai, Cheng Peng, et al. Salt Structure Formation Modeling Controlled by Structure Inclination Angle:Take the Lower Congo Basin as an Example[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2):277-288.
[12] General Bathymetric Chart of the Oceans[EB/OL]. (2019-01-13). http://www.gebco.net/.
[13] Anka Z, Michel S, Primio R D. Evidence of a Large Upper-Cretaceous Depocentre Across the Continent-Ocean Boundary of the Congo-Angola Basin:Implications for Palaeo-Drainage and Potential Ultra-Deep Source Rocks[J]. Marine and Petroleum Geology, 2010, 27(3):601-611.
[14] 方堃. 安哥拉下刚果盆地石油地质特征概述[J]. 内蒙古石油化工, 2018, 44(7):106-109. Fang Kun. Petroleum Geology in Angola Lower Congo Basin[J]. Inner Mongolia Petrochemical Industry, 2018, 44(7):106-109.
[15] Nombomakaya N L, Han C H. Pre-Salt Petroleum System of Vandji-Conkouati Structure (Lower Congo Basin), Republic of Congo[J]. Research Journal of Applied Sciences, 2012, 3:101-107.
[16] 秦雁群, 张光亚, 梁英波, 等. 南大西洋深水油气分布特征、聚集规律与勘探方向[J]. 天然气地球科学, 2016, 27(2):229-240. Qin Yanqun, Zhang Guangya, Liang Yingbo, et al. Distribution Characteristics, Accumulation Rules and Exploration Directions of Deep Water Hydrocarbon in South Atlantic[J]. Natural Gas Geoscience, 2016, 27(2):229-240.
[17] 张光亚, 温志新, 梁英波, 等. 全球被动陆缘盆地构造沉积与油气成藏:以南大西洋周缘盆地为例[J]. 地学前缘, 2014, 21(3):18-25. Zhang Guangya, Wen Zhixin, Liang Yingbo, et al. Tectonic-sedimentary Features and Petroleum Accumulation in the Passive Continental Margin Basins of South Atlantic Peripheries[J]. Earth Science Frontiers, 2014, 21(3):18-25.
[18] Mohriak W U, Leroy S. Architecture of Rifted Continental Margins and Insights from the South Atlantic, North Atlantic and Red Sea-Gulf of Aden Conjugate Margins[J]. Geological Society London Special Publications, 2013, 369(1):497-535.
[19] 陶崇智, 殷进垠, 陆红梅, 等. 南大西洋被动陆缘盆地盐岩对油气成藏的影响[J]. 石油实验地质, 2015, 37(5):614-618. Tao Chongzhi, Yin Jinyin, Lu Hongmei, et al. Impact of Salt on Hydrocarbon Accumulation in South Atlantic Passive Margin Basins[J]. Petroleum Geology and Experiment, 2015, 37(5):614-618.
[20] 逄林安. 西非下刚果盆地大型湖相浊积岩特征及勘探意义[J]. 海洋地质前沿, 2018, 34(4):41-48. Pang Lin'an. Characteristics and Exploration Potential of Lacustrine Turbiditic Sandstone in Lower Congo Basin of West Africa[J]. Marine Geology Frontiers, 2018, 34(4):41-48.
[21] Ho S, Cartwright J A, Imbert P. Vertical Evolution of Fluid Venting Structures in Relation to Aas Flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola[J]. Marine Geology, 2012, 332/323/334:40-55.
[22] Davison I. Geology and Tectonics of the South Atlantic Brazilian Salt Basins[J]. Geological Society London Special Publications, 2007, 272(1):345-359.
[23] 黄兴, 杨香华, 朱红涛, 等. 下刚果盆地Madingo组海相烃源岩岩相特征和沉积模式[J]. 石油学报, 2017, 38(10):74-88. Huang Xing, Yang Xianghua, Zhu Hongtao,et al. Lithofacies Characteristics and Sedimentary Pattern of Madingo Formation Marine Hydrocarbon Source Rocks in Lower Congo Basin[J]. Acta Petrolei Sinica, 2017, 38(10):74-88.
[24] Liu L, Tang D, Xu H, et al. Reservoir Prediction of Deep-Water Turbidite Sandstones with Seismic Lithofacies Control:A Case Study in the C Block of Lower Congo Basin[J]. Marine & Petroleum Geology, 2016, 71:1-11.
[25] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt Tectonic Controls on Deep-Water Turbidite Depositional Systems:Miocene, Southwestern Lower Congo Basin, Offshore Angola[J]. Basin Research, 2014, 26(4):597-620.
[26] Hudec M R, Jackson M P A. Terra Infirma:Understanding Salt Tectonics[J]. Earth-Science Reviews, 2007, 82(1/2):1-28.
[27] Anderson J E, Cartwright J, Drysdall S J, et al. Controls on Turbidite Sand Deposition During Gravity-Driven Extension of a Passive Margin:Examples From Miocene Sediments in Block 4, Angola[J]. Marine & Petroleum Geology, 2000, 17(10):1165-1203.
[28] Valle P J, Gjelberg J G,Helland-Hansen W. Tectonostratigraphic Development in the Eastern Lower Congo Basin, Offshore Angola, West Africa[J]. Marine & Petroleum Geology, 2001, 18:909-927.
[29] Teisserenc P,Villemin J. Sedimentary Basin of Gabon-Geology and Oil Systems[J]. American Association of Petroleum Geologists, 1989, 84:177-199.
[30] Lavier L, Steckler M, Brigaud F. An Improved Method for Reconstructing the Stratigraphy and Bathymetry of Continental Margins:Application to the Cenozoic Tectonic and Sedimentary History of the Congo Margin[J]. AAPG Bulletin, 2000, 84(7):923-939.
[31] Anka Z,Séranne M. Reconnaissance Study of the Ancient Zaire (Congo) Deep-Sea Fan(ZaiAngo Project)[J]. Marine Geology, 2004, 209(1):223-244.
[32] Anka Z, Séranne M, Lopez M, et al. The Long-Term Evolution of the Congo Deep-Sea Fan:A Basin-Wide View of the Interaction Between a Giant Submarine Fan and a Mature Passive Margin (Zaiango Project)[J]. Tectonophysics, 2009, 470(1):42-56.
[33] Morgan J K,Mcgovern P J. Discrete Element Simulations of Gravitational Volcanic Deformation:1:Deformation Structures and Geometries[J]. Journal of Geophysical Research Atmospheres, 2005, 110(B5):2701-2711.
[34] Maxwell S A. Deformation Styles of Allochthonous Salt Sheets During Differential Loading Conditions:Insights from Discrete Element Models[D]. Houston:Rice University, 2009:1-17.
[35] Dean S L,Morgan J K. Influence of Mobile Shale on Thrust Faults:Insights from Discrete Element Simulations[J]. AAPG Bulletin, 2015, 99(3):403-432.
[36] Unternehr P, Péronpinvidic G, Manatschal G, et al. Hyper-Extended Crust in the South Atlantic:In Search of a Model[J]. Petroleum Geoscience, 2010, 16(3):207-215.
[37] Nikolinakou M A, Luo G, Hudec M R, et al. Geomechanical Modeling of Stresses Adjacent to Salt Bodies:Part 2:Poroelastoplasticity and Coupled Overpressures[J]. AAPG Bulletin, 2012, 96(1):65-85.
[38] Ings S, Beaumont C,Gemmer L. Numerical Modeling of Salt Tectonics on Passive Continental Margins:Preliminary Assessment of the Effects of Sediment Loading, Buoyancy, Margin Tilt, and Isostasy[J]. Salt Sediment Interactions and Hydrocarbon Prospectivity:Concepts, Applications, and Case Studies for the 21st Century, 2004, 24:36-68.
[39] Morgan J K. Particle Dynamics Simulations of Rate and State-Dependent Frictional Sliding of Granular Fault Gouge[J]. Pure & Applied Geophysics, 2004, 161(9/10):1877-1891.
[40] Carter N L, Horseman S T, Russell J E, et al. Rheology of Rocksalt[J]. Journal of Structural Geology, 1993, 15(9/10):1257-1271.
[41] Channell J E T, Stoner J S, Hodell D A, et al. Geomagnetic Paleointensity for the Last 100 kyr from the Sub-Antarctic South Atlantic:A Tool for Inter-Hemispheric Correlation[J]. Earth & Planetary Science Letters, 2000, 175(1/2):145-160.
[42] 汤济广, 梅廉夫, 沈传波, 等. 平衡剖面技术在盆地构造分析中的应用进展及存在的问题[J]. 油气地质与采收率, 2006, 13(6):19-22. Tang Jiguang, Mei Lianfu, Shen Chuanbo, et al. Advances and Problems in the Application of Balanced Cross-Section Technique in Structure Studies of Basins[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(6):19-22.
[43] 毛小平, 吴冲龙, 袁艳斌. 地质构造的物理平衡剖面法[J]. 地球科学:中国地质大学学报, 1998, 23(2):167-170. Mao Xiaoping, Wu Chonglong, Yuan Yanbin, et al. Physical Balanced Cross Sections for Geological Structure[J]. Earth Science:Journal of China University of Geosciences, 1998, 23(2):167-170.
[44] Quirk D G, Schodt N, Lassen B, et al. Salt Tectonics on Passive Margins:Examples from Santos, Campos and Kwanza Basins[J]. Geological Society London Special Publications, 2012, 363(1):207-244.
[45] Duval B, Cramez C,Jackson M P A. Raft Tectonics in the Kwanza Basin, Angola[J]. Marine & Petroleum Geology, 1992, 9(4):389-404.
[46] Brun J P, Fort X. Salt Tectonics at Passive Margins:Geology Versus Models[J]. Marine & Petroleum Geology, 2011, 28(6):1123-1145.
[47] 于水, 胡望水, 李涛, 等. 下刚果盆地重力滑脱伸展构造生长发育特征[J]. 石油天然气学报, 2012, 34(3):28-33. Yu Shui, Hu Wangshui, Li Tao, et al. Features of Gravitational Decollement and Extension Structure Development in Lower Congo Basin[J]. Journal of Oil and Gas Technology, 2012, 34(3):28-33.
[48] 陈亮, 赵千慧, 王英民, 等. 盐构造与深水水道的交互作用:以下刚果盆地为例[J]. 沉积学报, 2017, 35(6):1197-1204. Chen Liang, Zhao Qianhui, Wang Yingmin, et al. Interactions Between Submarine Channels and Salt Structures:Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6):1197-1204.
[49] Anka Z, Ondrak R, Kowitz A, et al. Identification and Numerical Modelling of Hydrocarbon Leakage in the Lower Congo Basin:Implications on the Genesis of Km-Wide Seafloor Mounded Structures[J]. Tectonophysics, 2013, 604:153-171.
[50] 马中振, 谢寅符, 张志伟,等. 南美东缘盐岩发育特征及其与油气聚集的关系[J]. 吉林大学学报(地球科学版), 2013, 43(2):360-370. Ma Zhongzhen, Xie Yinfu, Zhang Zhiwei, et al. Salt Development Characteristics and Its Controlling on Hydrocarbon Accumulation in Eastern Margin of South America[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2):360-370.
[1] Duan Yunxing, Yang Hao. Analysis of Influencing Factors on Heat Extraction Performance of Enhanced Geothermal System [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1161-1172.
[2] Sheng Chong, Xu Hehua, Zhang Yunfan, Zhang Wentao, Ren Ziqiang. Hydrological Properties of Calcareous Sands and Its Influence on Formation of Underground Freshwater Lenson Islands [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1127-1138.
[3] Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1723-1731.
[4] Sun chao, Xu Chengjie. Influence of Excavation of a Deep Excavation on the Surrounding Environment [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1698-1705.
[5] Wang Changming, Li Tong, Tian Shuwen, Li Shuo. Establishment and Application of Prediction Model for Debris Flow Accumulation Area Based on LAHARZ [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1672-1679.
[6] Yang Xinle, Bi Xuqing, Zhang Yongli, Li Weikang, Dai Wenzhi, Wang Yapeng, Su Chang. Numerical Simulation of Migration and Output Law of Coal-Bed Methane in Heat Injection Combined Well Group Mining [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1100-1108.
[7] Chang Xiaojun, Ge Weiya, Yu Yang, Zhao Yu, Ye Longzhen, Zhang Taili, Wei Zhenlei. Mechanism and Mitigation Measures of Qishan Landslide of Yongtai in Fujian Province [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1063-1072.
[8] Yin Songyu, Zhao Dajun. Experiment on Effect of Different Stress Conditions on Rock Strength Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 755-761.
[9] Yang Bing, Xu Tianfu, Li Fengyu, Tian Hailong, Yang Leilei. Numerical Simulation on Impact of Water-Rock Interaction on Reservoir Permeability: A Case Study of Upper Paleozoic Sandstone Reservoirs in Northeastern Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 526-538.
[10] Chen Yongzhen, Wu Bin, Yang Fan, Wu Gang, Weng Yang. Coupled Numerical Simulation of Seepage and Deformation of Interceptingand Drainaging Water with Compressed Air [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 485-492.
[11] Chen Yongzhen, Wu Gang, Sun Hongyue, Shang Yuequan. Numerical Simulation of the Efficiency of Intercepting Water with Compressed Air in the Treatment of Landslide [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1427-1433.
[12] Li Ang, Ju Linbo, Zhang Liyan. Relationship Between Hydrocarbon Accumulation and Paleo-Mesozoic Tectonic Evolution Characteristics of Gucheng Lower Uplift in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 545-555.
[13] Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716.
[14] Tan Jiahua, Lei Hongwu. Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1229-1235.
[15] Yin Songyu, Zhao Dajun, Zhou Yu, Zhao Bo. Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 526-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!