Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (4): 1161-1172.doi: 10.13278/j.cnki.jjuese.20190041

Previous Articles    

Analysis of Influencing Factors on Heat Extraction Performance of Enhanced Geothermal System

Duan Yunxing, Yang Hao   

  1. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
  • Received:2019-03-06 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (51474192)

Abstract: The Rehai geothermal field was taken as the geological background, the influence of well spacing, injection flow rate and temperature, and reservoir permeability on the heat extraction performance of the enhanced geothermal system were analyzed by using the orthogonal design method, and also the mutual influence between these factors. The results show that the injection flow rate is the key factor affecting the heat extraction performance and has a significant impact on the determination of injection temperature and well spacing. The larger the injection flow rate is, the shorter the stable heat extraction time and operating life are. The smaller the change of injection flow rate (increase 0.06 m3/s) is,the greater the impact will be on the heat extraction temperature (decrease 47 ℃); Increasing the injection temperature can improve the heat extraction temperature and operating life; however, the effect is limited. When the injection temperature is increased by 30 ℃, the heat recovery temperature is only increased by 10 ℃ after 50 a. The effects of well spacing, permeability, and production pressure on the heat extraction performance are similar and much smaller than the injection flow rate.

Key words: enhanced geothermal system, well pattern design, numerical simulation, parameter optimization

CLC Number: 

  • P314
[1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Evaluation of Geothermal Resources Potential for Dry Hot Rock in China Mainland[J]. Science & Technology Review, 2012, 30(42):25-31.
[2] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4):1139-1152. Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, et al. Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4):1139-1152.
[3] 凌璐璐, 苏正, 翟海珍, 等. 西藏羊易EGS开发储层温度场与开采寿命影响因素数值模拟研究[J]. 新能源进展, 2015, 3(5):367-374. Ling Lulu, Su Zheng, Zhai Haizhen, et al. Numerical Simulation Study of the Parameters Effect on Temperature Distribution and Mining Life During EGS Exploitation, Yangyi of Tibet[J]. Advances in New And Renewable Energy, 2015, 3(5):367-374.
[4] 陈继良, 蒋方明. 增强型地热系统热开采过程的数值模拟研究[J]. 新能源进展, 2013, 1(2):189-195. Chen Jiliang, Jiang Fangming. A Numerical Study to Heat Mining Process of Enhanced Geothermal Systems[J]. Advances in New and Renewable Energy, 2013, 1(2):189-195.
[5] 陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(12):111-117. Chen Jiliang, Jiang Fangming. A Numerical Study on Heat Extraction Performance of Enhanced Geothermal Systems[J]. Renewable Energy Resources, 2013, 31(12):111-117.
[6] 岳高凡, 邓晓飞, 邢林啸, 等.共和盆地增强型地热系统开采过程数值模拟[J]. 科技导报, 2014, 33(19):62-67. Yue Gaofan, Deng Xiaofei, Xing Linxiao, et al. Numerical Simulation of Hot Dry Rock Exploitation Using Enhanced Geothermal Systems in Gonghe Basin[J]. Science & Technology Review, 2014, 33(19):62-67.
[7] 杨艳林, 靖晶, 王福刚, 等. CO2增强地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, 35(7):1130-1137. Yang Yanlin, Jing Jing, Wang Fugang. Optimal Design of Well Spacing on CO2 Enhanced Geothermal[J]. Acta Energiae Solaris Sinica, 2014, 35(7):1130-1137.
[8] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19):22-27. Gan Haonan, Wang Guiling, Lin Wenjing. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China[J]. Science & Technology Review, 2015, 33(19):22-27.
[9] 徐青, 李翠华, 汪缉安, 等. 云南地热资源:以腾冲地区为重点进行解剖[J]. 地质地球化学, 1997(4):77-84. Xu Qing, Li Cuihua, Wang Ji'an, et al. Geothermal Resources in Tengchong Region Yunnan Province[J]. Geology-Geochemistry, 1997(4):77-84.
[10] 廖志杰, 尹正武, 贾希义, 等. 腾冲热海地热田的概念模型[J]. 高校地质学报, 1997,3(2):85-94. Liao Zhijie, Yin Zhengwu, Jia Xiyi. Conceptual Model of the Rehai (Hot Sea) Geothermal Field in Tengchong, Yunnan Province,China[J]. Geology Journal of Chinese University, 1997, 3(2):85-94.
[11] 上官志冠. 腾冲热海地热田热储结构与岩浆热源的温度[J]. 岩石学报, 2000,16(1):83-90. Shangguan Zhiguan. Structure of Geothermal Reservoirs and the Temperature of Mantle-Derived Magma Hot Source in the Rehai Area, Tengchong[J]. Acta Petrologica Sinica, 2000, 16(1):83-90.
[12] 赵慈平, 冉华, 陈坤华. 由相对地热梯度推断的腾冲火山区现存岩浆囊[J]. 岩石学报, 2006, 22(6):1517-1528. Zhao Ciping, Ran Hua, Chen Kunhua. Present-Day Magma Chambers in Tengchong Volcano Area Inferred from Relative Geothermal Gradient[J]. Acta Petrologica Sinica, 2006,22(6):1517-1528.
[13] 方娜. 腾冲热海地热田地质特征及形成机制研究[D]. 昆明:昆明理工大学, 2013. Fang Na. Geological Characteristics and Formation Mechanism of Tengchong Rehai Geothermal Field[D]. Kunming:Kunming University of Science and Technology, 2013.
[14] 郭婷婷. 云南腾冲热海地热田特征及成因研究[D]. 昆明:昆明理工大学, 2013. Guo Tingting. Study on Characteristics and Genesis of Rehai Geothermal Field in Yunnan[D]. Kunming:Kunming University of Science and Technology, 2013.
[15] 李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例[J]. 地球科学, 2015, 40(9):1576-1584. Li Jiexiang, Guo Qinghai, Wang Yanxin. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Process During Ascent to Surface:A Case Study in Rehai Geothermal Field Tengchong[J]. Earth Science, 2015, 40(9):1576-1584.
[16] 全国地质资料馆/数字地质资料馆. 1:20万地质图G4727幅数据[EB/OL]. (2013-06-27)[2018-11-25]. http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A78E51954E0430100007F182E. National Geological Archive/Digital Geological Archive. 1:200000 Geological Maps G4727 Data[EB/OL]. (2013-06-27)[2018-11-25]. http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A78E51954E0430100007F182E.
[17] 段云星. 干热岩地热资源开采井网优化数值模拟研究[D]. 北京:中国地质大学(北京), 2017. Duan Yunxing. Study on Numerical Simulation of Well Pattern Optimization for Exploitation of Dry Hot Rock Geothermal Resources[D]. Beijing:China University of Geosciences (Beijing), 2017.
[18] 孙培德, 杨东全, 陈奕柏. 多物理场耦合模型及数值模拟导论[M]. 北京:中国科学技术出版社, 2007:113-116. Sun Peide, Yang Dongquan, Chen Yibo. Introduction to Coupling Models for Multiphysics and Numerical Simulations[M]. Beijing:Science and Technology Press of China, 2007:113-116.
[19] 赵阳升, 万志军, 康建荣. 高温岩体地热开发导论[M]. 北京:科学出版社, 2004:15-30. Zhao Yangsheng, Wan Zhijun, Kang Jianrong. Introduction to Development of Hot Rock[M]. Beijing:Science Press, 2004:15-30.
[20] Leary P, Malin P. Prospects for Assessing Enhanced Geothermal System (EGS) Basement Rock Flow Stimulation by Wellbore Temperature Data[J]. Energies, 2017, 10(12):1979.
[21] Guo L L, Zhang Y B. Experimental investigation of Granite Properties Under Different Temperatures and Pressures and Numerical Analysis of Damage Effect in Enhanced Geothermal System[J]. Renewable Energy, 2018, 12(6):107-125.
[22] Kong Y L, Pang Z H. Optimization of Well-Doublet Placement in Geothermal Reservoirs Using Numerical Simulation and Economic Analysis[J]. Environment Earth Science, 2017,76:118.
[23] Pandey S N, Vishal V. Sensitivity Analysis of Coupled Processes and Parameters on the Performance of Enhanced Geothermal Systems[J]. Science Report, 2017, 7:17057.
[24] Liu J, Cheng W L. The Stratigraphic and Operating Parameters Influence on Economic Analysis for Enhanced Geothermal Double Wells Utilization System[J]. Energy, 2018, 159:264-276.
[25] 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J].中国石油大学学报(自然科学版), 2016, 40(6):109-117. Sun Zhixue, Xu Yi, Lü Shuhuan. A Thermos-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems[J]. Journal of China University of Petroleum, 2016, 40(6):109-117.
[26] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6):1723-1731. Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1723-1731.
[27] 樊冬艳, 孙海, 姚军, 等. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3):798-807. Fan Dongyan, Sun Hai, Yao Jun, et al. Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):797-806.
[1] Sheng Chong, Xu Hehua, Zhang Yunfan, Zhang Wentao, Ren Ziqiang. Hydrological Properties of Calcareous Sands and Its Influence on Formation of Underground Freshwater Lenson Islands [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1127-1138.
[2] Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1723-1731.
[3] Sun chao, Xu Chengjie. Influence of Excavation of a Deep Excavation on the Surrounding Environment [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1698-1705.
[4] Wang Changming, Li Tong, Tian Shuwen, Li Shuo. Establishment and Application of Prediction Model for Debris Flow Accumulation Area Based on LAHARZ [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1672-1679.
[5] Yang Xinle, Bi Xuqing, Zhang Yongli, Li Weikang, Dai Wenzhi, Wang Yapeng, Su Chang. Numerical Simulation of Migration and Output Law of Coal-Bed Methane in Heat Injection Combined Well Group Mining [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1100-1108.
[6] Chang Xiaojun, Ge Weiya, Yu Yang, Zhao Yu, Ye Longzhen, Zhang Taili, Wei Zhenlei. Mechanism and Mitigation Measures of Qishan Landslide of Yongtai in Fujian Province [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1063-1072.
[7] Yin Songyu, Zhao Dajun. Experiment on Effect of Different Stress Conditions on Rock Strength Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 755-761.
[8] Fan Dongyan, Sun Hai, Yao Jun, Li Huafeng, Yan Xia, Zhang Kai, Zhang Lin. Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 797-806.
[9] Yang Bing, Xu Tianfu, Li Fengyu, Tian Hailong, Yang Leilei. Numerical Simulation on Impact of Water-Rock Interaction on Reservoir Permeability: A Case Study of Upper Paleozoic Sandstone Reservoirs in Northeastern Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 526-538.
[10] Chen Yongzhen, Wu Bin, Yang Fan, Wu Gang, Weng Yang. Coupled Numerical Simulation of Seepage and Deformation of Interceptingand Drainaging Water with Compressed Air [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 485-492.
[11] Chen Yongzhen, Wu Gang, Sun Hongyue, Shang Yuequan. Numerical Simulation of the Efficiency of Intercepting Water with Compressed Air in the Treatment of Landslide [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1427-1433.
[12] Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716.
[13] Tan Jiahua, Lei Hongwu. Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1229-1235.
[14] Yin Songyu, Zhao Dajun, Zhou Yu, Zhao Bo. Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 526-533.
[15] Bao Xinhua, Zhang Yu, Li Ye, Wu Yongdong, Ma Dan, Zhou Guanghui. Evaluation of Development Selection for Enhanced Geothermal System in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 564-572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!